Skip to main content
Log in

Oscillatory characteristics of metallic nanoparticles inside lipid nanotubes

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This study is concerned with the oscillatory behavior of metallic nanoparticles, and in particular silver and gold nanoparticles, inside lipid nanotubes (LNTs) using the continuum approximation along with the 6-12 Lennard-Jones (LJ) potential function. The nanoparticle is modeled as a dense sphere and the LNT is assumed to be comprised of six layers including two head groups, two intermediate layers and two tail groups. To evaluate van der Waals (vdW) interactions, analytical expressions are first derived through undertaking surface and volume integrals which are then validated by a fully numerical scheme based on the differential quadrature (DQ) technique. Using the actual force distribution between the two interacting molecules, the equation of motion is directly solved utilizing the Runge-Kutta numerical integration scheme to arrive at the time history of displacement and velocity of the inner core. Also, a semi-analytical expression incorporating both geometrical parameters and initial conditions is introduced for the precise evaluation of oscillation frequency. A comprehensive study is conducted to gain an insight into the influences of nanoparticle radius, LNT length, head and tail group thicknesses and initial conditions on the oscillatory behavior of the metallic nanoparticles inside LNTs. It is found that the escape velocity and oscillation frequency of silver nanoparticles are higher than those of gold ones. It is further shown that the oscillation frequency is less affected by the tail group thickness when compared to the head group thickness.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dunn, D.N. Guerra, P. Mohanty, Eur. Phys. J. B 69, 5 (2009)

    Article  ADS  Google Scholar 

  2. S.W. Lee, E.E. Campbell, Curr. Appl. Phys. 13, 1844 (2013)

    Article  Google Scholar 

  3. M. Damnjanović, I. Milošević, T. Vuković, R. Sredanović, Phys. Rev. B 60, 2728 (1999)

    Article  ADS  Google Scholar 

  4. R.E. Tuzun, D.W. Noid, B.G. Sumpter, Nanotechnology 6, 64 (1995)

    Article  ADS  Google Scholar 

  5. J. Cumings, A. Zettl, Science 289, 602 (2000)

    Article  ADS  Google Scholar 

  6. Q. Zheng, Q. Jiang, Phys. Rev. Lett. 88, 045503 (2002)

    Article  ADS  Google Scholar 

  7. Q. Zheng, J.Z. Liu, Q. Jiang, Phys. Rev. B 65, 245409 (2002)

    Article  ADS  Google Scholar 

  8. B.J. Cox, N. Thamwattana, J.M. Hill, Proc. R. Soc. London Ser. A 463, 477 (2007)

    Article  ADS  MATH  Google Scholar 

  9. R. Ansari, S. Ajori, F. Sadeghi, J. Phys. Chem. Solids 85, 264 (2015)

    Article  ADS  Google Scholar 

  10. R. Ansari, E. Mahmoudinezhad, B. Motevalli, J. Vib. Control 20, 773 (2014)

    Article  Google Scholar 

  11. S.B. Legoas, V.R. Coluci, S.F. Braga, P.Z. Coura, S.O. Dantas, D.S. Galvão, Nanotechnology 15, S184 (2004)

    Article  ADS  Google Scholar 

  12. J. Servantie, P. Gaspard, Phys. Rev. B 73, 125428 (2006)

    Article  ADS  Google Scholar 

  13. P. Liu, Y.W. Zhang, C. Lu, J. Appl. Phys. 97, 094313 (2005)

    Article  ADS  Google Scholar 

  14. H.-Y. Song, X.-W. Zha, Phys. Lett. A 373, 1058 (2009)

    Article  ADS  Google Scholar 

  15. R. Ansari, F. Sadeghi, Eur. J. Mech. A. 49, 283 (2015)

    Article  Google Scholar 

  16. D. Baowan, N. Thamwattana, J.M. Hill, Eur. Phys. J. D 44, 117 (2007)

    Article  ADS  Google Scholar 

  17. T.A. Hilder, J.M. Hill, J. Phys. A 40, 3851 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. R. Ansari, F. Sadeghi, S. Ajori, Mech. Res. Commun. 47, 18 (2013)

    Article  Google Scholar 

  19. R. Ansari, B. Motevalli, J. Vib. Acoust. 133, 051003 (2011)

    Article  Google Scholar 

  20. R. Ansari, F. Sadeghi, B. Motevalli, Commun. Nonlinear Sci. Numer. Simul. 18, 769 (2013)

    Article  ADS  Google Scholar 

  21. R. Ansari, F. Sadeghi, J. Nanotechnol. Eng. Med. 3, 011001 (2012)

    Article  Google Scholar 

  22. A. Pinchuk, U. Kreibig, A. Hilger, Surf. Sci. 557, 269 (2004)

    Article  ADS  Google Scholar 

  23. N.A. Dhas, C.P. Raj, A. Gedanken, Chem. Mater. 10, 1446 (1998)

    Article  Google Scholar 

  24. G. Carotenuto, G.P. Pepe, L. Nicolais, Eur. Phys. J. B 16, 11 (2000)

    Article  ADS  Google Scholar 

  25. P. Mohanpuria, N.K. Rana, S.K. Yadav, J. Nanopart. Res. 10, 507 (2008)

    Article  Google Scholar 

  26. S. Paul, C. Pearson, A. Molloy, M.A. Cousins, M. Green, S. Kolliopoulou, Dimitrakis, P. Normand, D. Tsoukalas, M.C. Petty, Nano Lett. 3, 533 (2003)

    Article  ADS  Google Scholar 

  27. S. Anandhakumar, V. Mahalakshmi, A.M. Raichur, Mater. Sci. Eng. C 32, 2349 (2012)

    Article  Google Scholar 

  28. C.-H. Xue, J. Chen, W. Yin, S.-T. Jia, J.-Z. Ma, Appl. Surf. Sci. 258, 2468 (2012)

    Article  ADS  Google Scholar 

  29. G. Chen, H. Tong, T. Gao, Y. Chen, G. Li, Anal. Chim. Acta 849, 1 (2014)

    Article  ADS  Google Scholar 

  30. Y. Zhou, T. Shimizu, Chem. Mater. 20, 625 (2008)

    Article  Google Scholar 

  31. Y. Zhou, Crit. Rev. Solid State Mater. Sci. 33, 183 (2008)

    Article  Google Scholar 

  32. J.F. Nagle, S. Tristram-Nagle, Biochim. Biophys. Acta 1469, 159 (2000)

    Article  Google Scholar 

  33. B.A. Lewis, D.M. Engelman, J. Mol. Biol. 166, 211 (1983)

    Article  Google Scholar 

  34. W. Rawicz, K.C. Olbrich, T. McIntosh, D. Needham, E. Evans, Biophys. J. 79, 328 (2000)

    Article  Google Scholar 

  35. H. Träuble, D.H. Haynes, Chem. Phys. Lipids 7, 324 (1971)

    Article  Google Scholar 

  36. O. Berger, O. Edholm, F. Jähnig, Biophys. J. 72, 2002 (1997)

    Article  ADS  Google Scholar 

  37. R. Qiao, A.P. Roberts, A.S. Mount, S.J. Klaine, P.C. Ke, Nano Lett. 7, 614 (2007)

    Article  ADS  Google Scholar 

  38. H. Wang, S. Michielssens, S.L.C. Moors, A. Ceulemans, Nano Res. 2, 945 (2009)

    Article  Google Scholar 

  39. S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, J. Phys. Chem. B 111, 7812 (2007)

    Article  Google Scholar 

  40. J.C. Shelley, M.Y. Shelley, R.C. Reeder, S. Bandyopadhyay, P.B. Moore, M.L. Klein, J. Phys. Chem. B 105, 9785 (2001)

    Article  Google Scholar 

  41. D. Baowan, B.J. Cox, J.M. Hill, J. Mol. Model. 18, 549 (2012)

    Article  Google Scholar 

  42. W. Sukchom, K. Chayantrakom, P. Satiracoo, D. Baowan, Southeast Asian J. Sci. 2, 87 (2013)

    Google Scholar 

  43. J.E. Jones, Proc. R. Soc. Lond. A 106, 463 (1924)

    Article  ADS  Google Scholar 

  44. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular theory of gases and liquids (Wiley, New York, 1954), Vol. 26

  45. M. Schoen, C. Hoheisel, Mol. Phys. 52, 33 (1984)

    Article  ADS  Google Scholar 

  46. P. Nicolini, E. Guàrdia, M. Masia, J. Chem. Phys. 139, 184111 (2013)

    Article  ADS  Google Scholar 

  47. S.W. Chiu, H.L. Scott, E. Jakobsson, J. Chem. Theory Comput. 6, 851 (2010)

    Article  Google Scholar 

  48. F. Pirani, S. Brizi, L.F. Roncaratti, P. Casavecchia, D. Cappelletti, F. Vecchiocattivi, Phys. Chem. Chem. Phys. 10, 5489 (2008)

    Article  Google Scholar 

  49. H. Choi, H. Kang, H. Park, J. Phys. Chem. B 114, 2980 (2010)

    Article  Google Scholar 

  50. D. Baowan, H. Peuschel, A. Kraegeloh, V. Helms, J. Mol. Mod. 19, 2459 (2013)

    Article  Google Scholar 

  51. D. Baowan, N. Thamwattana, Microporous Mesoporous Mater. 176, 209 (2013)

    Article  Google Scholar 

  52. D.H. Buckley, Surface effects in adhesion, friction, wear, and lubrication (Elsevier, 1981), Vol. 5

  53. S.J. Marrink, A.H. de Vries, A.E. Mark, J. Phys. Chem. B 108, 750 (2004)

    Article  Google Scholar 

  54. A.K. Rappi, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skid, J. Am. Chem. Soc. 114, 10024 (1992)

    Article  Google Scholar 

  55. R. Ansari, F. Sadeghi, Faghih M. Shojaei, Nano 9, 1450034 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, F., Ansari, R. & Darvizeh, M. Oscillatory characteristics of metallic nanoparticles inside lipid nanotubes. Eur. Phys. J. D 69, 285 (2015). https://doi.org/10.1140/epjd/e2015-60412-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60412-1

Keywords

Navigation