A density functional study of small sized silver-doped silicon clusters: Ag2Sin (n = 1–13)

  • Cai Yang
  • Song Hao Jia
  • Mao Fen Ma
  • Shuai Zhang
  • Cheng Lu
  • Gen Quan Li
Regular Article


The structures and electronic properties for global minimum geometric structures of small-sized neutral Ag2Si n (n = 1–13) clusters have been investigated using the CALYPSO structure searching method coupled with density functional theory calculations. A great deal of low-energy geometric isomers are optimised at the B3LYP / GENECP theory level. The optimised structures suggest that the ground state Ag2Si n clusters are visibly distorted compared with the corresponding pure silicon clusters and favor a three-dimensional configuration. Starting with Ag2Si12, one Ag atom is fully encapsulated by the Si outer cages. Based on the averaged binding energy, fragmentation energy, second-order energy difference and HOMO-LUMO energy gap, it is seen that Ag2Si2 and Ag2Si5 are tested to be the most stable clusters, and the chemical stabilities of pure Si n+2 clusters can be reduced to some extent after doping two Ag atoms. Additionally, natural population and natural electronic configuration are discussed and the results reveal that charges transfer from the Ag atoms to the silicon frames and the spd hybridisations are present in all Ag2Si n clusters. Lastly, the results of natural bonds show that the Ag-Si bond in Ag2Si n clusters is dominated by small ionic character.

Graphical abstract


Clusters and Nanostructures 

Supplementary material

10053_2015_1324_MOESM1_ESM.pdf (4.5 mb)
Supplementary material, approximately 4.54 MB.


  1. 1.
    S. Chan, S. Kwon, T.W. Koo, L.P. Lee, A.A. Berlin, Adv. Mater. 15, 1595 (2003)CrossRefGoogle Scholar
  2. 2.
    B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, X. Cheng, Adv. Funct. Mater. 18, 2348 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Setton, J. Van der Spiegel, B. Rothman, Appl. Phys. Lett. 57, 357 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    S. Hymes, S.P. Muraka, C. Shepard, W.A. Langford, J. Appl. Phys. 71, 4623 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    S.M. Hwang, H.Y. Lee, S.W. Jang, S.M. Lee, S.J. Lee, H.K. Baik, J.Y. Lee, Electrochem. Solid-State Lett. 4, A97 (2001)CrossRefGoogle Scholar
  6. 6.
    X. Yang, Z. Wen, S. Huang, X. Zhu, X. Zhang, Solid. State. Ionics 177, 2807 (2006)CrossRefGoogle Scholar
  7. 7.
    J.J. Scherer, J.B. Paul, C.P. Collier, R.J. Saykally, J. Chem. Phys. 103, 113 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    J.B. Jaeger, T.D. Jaeger, M.A. Duncan, J. Phys. Chem. A 110, 9310 (2006)CrossRefGoogle Scholar
  9. 9.
    X.Y. Kong, X.J. Deng, H.G. Xu, Z. Yang, X.L. Xu, W.J. Zheng, J. Chem. Phys. 138, 244312 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    X.Y. Kong, H.G. Xu, W.J. Zheng, J. Chem. Phys. 137, 064307 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    X.Y. Kong, M.M. Wu, Z.G. Zhang, J.Y. Yuan, Q. Sun, W.J. Zheng, J. Chem. Phys. 136, 104308 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Y.J. Li, J.T. Lyon, A.P. Woodham, A. Fielicke, E. Janssens, Chem. Phys. Chem. 15, 328 (2014)CrossRefGoogle Scholar
  13. 13.
    D.H. Ziella, M.C. Caputo, P.F. Provasi, Int. J. Quantum. Chem. 111, 1680 (2011)CrossRefGoogle Scholar
  14. 14.
    F.C. Chuang, Y.Y. Hsieh, C.C. Hsu, M.A. Albao, J. Chem. Phys. 127, 144313 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Y.C. Wang, J. Lv, L. Zhu, Y.M. Ma, Phys. Rev. B 82, 094116 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Y.C. Wang, J. Lv, L. Zhu, Y.M. Ma, Comput. Phys. Commun. 183, 2063 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Y.C. Wang, M.S. Miao, J. Lv, L. Zhu, K.T. Yin, H.Y. Liu, Y.M. Ma, J. Chem. Phys. 137, 224108 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    X. Luo, J. Yang, H. Liu, X. Wu, Y. Wang, Y.M. Ma, S.H. Wei, X. Gong, H. Xiang. J. Am. Chem. Soc. 133, 16285 (2001)CrossRefGoogle Scholar
  19. 19.
    Y.Y. Jin, M. George, X.Y. Kuang, L.P. Ding, C. Lu, J.J. Wang, J. Lv, C.Z. Zhang, M. Ju, Phys. Chem. Chem. Phys. 17, 13590 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Ju, J. Lv, X.Y. Kuang, L.P. Ding, C. Lu, J.J. Wang, Y.Y. Jin, G. Maroulis. RSC. Adv. 5, 6560 (2015)CrossRefGoogle Scholar
  21. 21.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, GAUSSIAN 09 Revision C.01 (Gaussian, Inc., Wallingford, CT, 2009)Google Scholar
  24. 24.
    C.Y. Xiao, F. Hagelberg, W.A. Lester Jr., Phys. Rev. B 66, 075425 (2002)Google Scholar
  25. 25.
    D. Hossain, C.U. Pittman Jr., Chem. Phys. Lett. 451, 93 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    J.G. Han, R.N. Zhao, Y.H. Duan, J. Phys. Chem. A 111, 2148 (2007)CrossRefGoogle Scholar
  27. 27.
    N.M. Tam, T.B. Tai, V.T. Ngan, M.T. Nguyen, J. Phys. Chem. A 117, 6867 (2013)CrossRefGoogle Scholar
  28. 28.
    L.J. Guo, X. Liu, G.F. Zhao, Y.H. Luo, J. Chem. Phys. 126, 234704 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    V. Beutel, H.G. Kramer, G.L. Bhale, M. Kuhn, L. Weyers, W. Demtroder, J. Chem. Phys. 98, 2699 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    C. Jackschath, I. Rabin, W. Schulze, Z. Phys. D 22, 517 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    K.P. Huber, G. Herzberg, Molecular spectra and molecular structure. IV. Constants of diatomic molecules (Van Nostrand Reinhold, New York, 1979), pp. 215–223Google Scholar
  32. 32.
    W.A. de Heer, W.D. Knight, M.Y. Chou, M.L. Cohen, Solid State Phys. (Academic Press, San Diego, 1987), Vol. 40Google Scholar
  33. 33.
    Z.J. Wu, Z.M. Su, J. Chem. Phys. 124, 184306 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    P. Shao, X.Y. Kuang, L.P. Ding, M.M. Zhong, Z.H. Wang, Physica B 407, 4379 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    A.D. Zdetsis, J. Phys. Chem. A 113, 12079 (2009)CrossRefGoogle Scholar
  36. 36.
    A.M. Gao, G.L. Li, Y. Chang, H.Y. Chen, D. Finlow, Q.S. Li, Inorg. Chim. Acta. 51, 367 (2011)Google Scholar
  37. 37.
    H.G. Xu, Z.G. Zhang, Y. Feng, W.J. Zheng, Chem. Phys. Lett. 498, 22 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    R.N. Zhao, J.G. Han, Y.H. Duan, Thin Solid Films 556, 571 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Li, Y.P. Cao, Y.F. Li, S.P. Shi, X.Y. Kuang, Eur. Phys. J. D 66, 10 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    D. Hossain, C.U. Pittman Jr., S.R. Gwaltney, Chem. Phys. Lett. 451, 93 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    J. Wang, Y. Liu, Y.C. Li, Phys. Lett. A 374, 2736 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    P. Politzer, D.G. Truhlar, Chemical Applications of Atomic and Molecular Electrostatic Potentials (Plenum Press, New York, 1981), pp. 121–135Google Scholar
  43. 43.
    T. Lu, F.W. Chen, J. Comput. Chem. 33, 580 (2012)CrossRefGoogle Scholar
  44. 44.
    R.F. Bader, Atoms in Molecules – A Quantum Theory (Oxford University Press, Oxford, 1990), pp. 168–173Google Scholar
  45. 45.
    K.B. Wiberg, Tetrahedron 24, 1083 (1968)CrossRefGoogle Scholar
  46. 46.
    P. Popellier, Atoms in Molecules An Introduction (Prentice-Hall, Englalaood Cliffs, NJ, 2000), pp. 85–96Google Scholar
  47. 47.
    F.W. Biegler-König, R.F.W. Bader, T.H. Tang, J. Comput. Chem. 13, 317 (1982)CrossRefGoogle Scholar
  48. 48.
    C.F. Matta, R.J. Boyd, The Quantum Theory of Atoms in Molecules-From Solid State to DNA and Drug Design (Wiley-VCH, Weinheim, 2007), pp. 42–52Google Scholar
  49. 49.
    R. Bianchi, G. Gervasio, D. Marabello, Inorg. Chem. 39, 2360 (2000)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Computer Science and Information TechnologyNanyang Normal UniversityNanyangChina
  2. 2.Department of Physics and Electronic EngineeringNanyang Normal UniversityNanyangChina

Personalised recommendations