Skip to main content
Log in

Controlling instability and phase hops of a kicked two-level ion in Lamb-Dicke regime

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Nonlinearity and singularity lead to lack of quantum exact solution of a kicked rotor. We here study quantum motion of a laser-kicked two-level ion in the Lamb-Dicke regime and obtain a set of exact solutions of the generalized coherent states. A new stability region of parameter space where classical stability criterion fully agrees with fidelity treatment of quantum ground-state stability is found, which unusually contains the resonance frequency for a weak kick and the larger kick strength for a far-off-resonance frequency. When the field parameters in the stability region are applied, the ion’s wave-packet trains continuously oscillate in the Lamb-Dicke regime, while for the parameters in the instability region, they collapse and spread to far away from the Lamb-Dicke regime, resulting in the crossover from linearity to nonlinearity. Meanwhile the laser kicks bring hopping phases of the exact solutions, and lead to stable or unstable hops of the expected momentum and energy. The exact results provide a transparent scheme for using periodic kicks with wider parameter region to localize ions in the Lamb-Dicke regime and for suppressing the instability-induced decoherence in laser-ion interactions, which can be observed in the existing experimental setups and possess potential applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  2. K. Singer, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, F. Schmidt-Kaler, Rev. Mod. Phys. 82, 2609 (2010)

    Article  ADS  Google Scholar 

  3. C. Monroe, J. Kim, Science 339, 1164 (2013)

    Article  ADS  Google Scholar 

  4. D.J. Wineland, Rev. Mod. Phys. 85, 1103 (2013)

    Article  ADS  Google Scholar 

  5. H. Häffner, C.F. Roos, R. Blatt, Phys. Rep. 469, 155 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. J.I. Cirac, P. Zoller, Nat. Phys. 8, 264 (2012)

    Article  Google Scholar 

  7. P. Hauke, D. Marcos, M. Dalmonte, P. Zoller, Phys. Rev. X 3, 041018 (2013), and references therein.

    Google Scholar 

  8. C. Noh, B.M. Rodriguez-Lara, D.G. Angelakis, New J. Phys. 14 033028 (2012)

    Article  ADS  Google Scholar 

  9. A. Steane, C.F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, R. Blatt, Phys. Rev. A 62, 042305 (2000)

    Article  ADS  Google Scholar 

  10. A. Bermudez, T. Schaetz, M.B. Plenio, Phys. Rev. Lett. 110, 110502 (2013)

    Article  ADS  Google Scholar 

  11. R. Blatt, D. Wineland, Nature 453, 1008 (2008)

    Article  ADS  Google Scholar 

  12. C. Monroe, D.M. Meekhof, B.E. King, D.J. Wineland, Science 272, 1131 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. H. S Margolis, G.P. Barwood, G. Huang, H.A. Klein, S.N. Lea, K. Szymaniec, P. Gill, Science 306, 1355 (2004)

    Article  ADS  Google Scholar 

  14. T. Schneider, E. Peik, C. Tamm, Phys. Rev. Lett. 94, 230801 (2005)

    Article  ADS  Google Scholar 

  15. K. Sheridan, N. Seymour-Smith, A. Gardner, M. Keller, Eur. Phys. J. D 66, 289 (2012)

    Article  ADS  Google Scholar 

  16. S.A. Gardiner, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 79, 4790 (1997)

    Article  ADS  Google Scholar 

  17. W. Hai, Y. Duan, X. Zhu, X. Luo, L. Shi, J. Phys. A 31, 2991 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. R. Chacón, J.I. Cirac, Phys. Rev. A 51, 4900 (1995)

    Article  ADS  Google Scholar 

  19. G.P. Berman, D.F.V. James, R.J. Hughes, M.S. Gulley, M.H. Holzscheiter, G.V. López, Phys. Rev. A 61, 023403 (2000)

    Article  ADS  Google Scholar 

  20. T. Prosen, M. Znidaric, J. Phys. A 34, L681 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. T. Drouot, E. Gravier, T. Reveille, A. Ghizzo, P. Bertrand, X. Garbet, Y. Sarazin, T. Cartier-Michaud Eur. Phys. J. D 68, 280 (2014)

    Article  ADS  Google Scholar 

  22. K. Wang, M. Feng, J.H. Wu, Phys. Rev. A 52, 1419 (1995)

    Article  ADS  Google Scholar 

  23. A. Peres, Phys. Rev. A 30, 1610 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  24. L.S. Brown, Phys. Rev. Lett. 66, 527 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M.M. Nieto, D.R. Truax, New J. Phys. 2, 18 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  26. W. Hai, S. Huang, K. Gao, J. Phys. B 36, 3055 (2003)

    Article  ADS  Google Scholar 

  27. Q. Chen, K. Hai, W. Hai, J. Phys. A 43, 455302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  28. W. Hai, Q. Xie, J. Fang, Phys. Rev. A 72, 012116 (2005)

    Article  ADS  Google Scholar 

  29. H. Rabitz, R. de Vivie-Riddle, M. Motzkus, K. Kompa, Science 288, 824 (2008)

    Article  ADS  Google Scholar 

  30. P. Kral, I. Thanopulos, S. Moshe, Rev. Mod. Phys. 79, 53 (1995)

    Article  ADS  Google Scholar 

  31. F.L. Moore, J.C. Robinson, C.F. Bharucha, P.E. Williams, M.G. Raizen, Phys. Rev. Lett. 73, 2974 (1994)

    Article  ADS  Google Scholar 

  32. F.L. Moore, J.C. Robinson, C.F. Bharucha, B. Sundaram, M.G. Raizen, Phys. Rev. Lett. 75, 4598 (1995)

    Article  ADS  Google Scholar 

  33. G. Casati, B.V. Chirikov, F.M. Izraelev, J. Ford, Lect. Notes Phys. 93, 334 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Fishman, D.R. Grempel, R.E. Prange, Phys. Rev. Lett. 49, 509 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  35. P. McDowall, A. Hilliard, M. McGovern, T. Grünzweig, M.F. Andersen, New J. Phys. 11, 123021 (2009)

    Article  ADS  Google Scholar 

  36. R. Blümel, R. Meir, U. Smilanski, Phys. Lett. A 103, 353 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Yang, W. Hai, G. Lu, H. Zhong, Acta Physica Sinica 59, 2406 (2010) (in Chinese)

    Google Scholar 

  38. L. Ermann, D.L. Shepelyansky, J. Phys. A 47, 335101 (2014)

    Article  Google Scholar 

  39. Q. Xie, W. Hai, Eur. Phys. J. D 33, 265 (2005)

    Article  ADS  Google Scholar 

  40. Y.Y. Xu, F. Zhou, Y. Xie, M. Feng, J. Phys. B 43, 185503 (2010)

    Article  ADS  Google Scholar 

  41. A. Ullah, S.K. Ruddell, J.A. Currivan, M.D. Hoogerland, Eur. Phys. J. D 66, 315 (2012)

    Article  ADS  Google Scholar 

  42. M. ElGhafar, P. Törmä, V. Savichev, E. Mayr, A. Zeiler, W.P. Schleich, Phys. Rev. Lett. 78, 4181 (1997)

    Article  ADS  Google Scholar 

  43. Y. Wu, X.X. Yang, Phys. Rev. Lett. 78, 3086 (1997)

    Article  ADS  Google Scholar 

  44. A.R.R. Carvalho, A. Buchleitner, Phys. Rev. Lett. 93, 204101 (2004)

    Article  ADS  Google Scholar 

  45. S.S. Ivanov, N.V. Vitanov, Phys. Rev. A 84, 022319 (2011)

    Article  ADS  Google Scholar 

  46. W. Chen, W. Hai, J. Song, Acta Phys. Sinica 57, 1608 (2008) (in Chinese)

    Google Scholar 

  47. A. Ridinger, C. Weiss, Phys. Rev. A 79, 013414 (2009)

    Article  ADS  Google Scholar 

  48. H. Fielding, M. Shapiro, T. Baumert, J. Phys. B 41, 070201 (2008)

    Article  Google Scholar 

  49. W. Hai, K. Hai, Q. Chen, Phys. Rev. A 87, 023403 (2013)

    Article  ADS  Google Scholar 

  50. C. Champenois, M. Marciante, J. Pedregosa-Gutierrez, M. Houssin, M. Knoop, M. Kajita, Phys. Rev. A 81, 043410 (2010)

    Article  ADS  Google Scholar 

  51. A.J. Scott, C.A. Holmes, G.J. Milburn, Phys. Rev. A 61, 013401 (1999)

    Article  ADS  Google Scholar 

  52. B. Georgeot, D.L. Shepelyansky, Phys. Rev. Lett. 86, 2890 (2001)

    Article  ADS  Google Scholar 

  53. B. Lévi, B. Georgeot, D.L. Shepelyansky, Phys. Rev. E 67, 046220 (2003)

    Article  ADS  Google Scholar 

  54. U. Bhattacharya, S. Dasgupta, A. Dutta, Phys. Rev. E 90, 022920 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Hai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Tan, J., Hai, K. et al. Controlling instability and phase hops of a kicked two-level ion in Lamb-Dicke regime. Eur. Phys. J. D 69, 278 (2015). https://doi.org/10.1140/epjd/e2015-60403-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60403-2

Keywords

Navigation