Skip to main content

Atomic thermal motion effect on efficiency of a high-speed quantum memory

Abstract

We discuss the influence of atomic thermal motion on the efficiency of multimode quantum memory in two configurations: over the free expand of atoms cooled beforehand in a magneto-optical trap, and over complete mixing of atoms in a closed cell at room temperature. We consider the high-speed quantum memory, and assume that writing and retrieval are short enough, and the displacements of atoms during these stages are negligibly small. At the same time we take in account thermal motion during the storage time, which, as well known, must be much longer than durations of all the other memory processes for successful application of memory cell in communication and computation. We will analyze this influence in terms of eigenmodes of the full memory cycle and show that distortion of the eigenmodes, caused by thermal motion, leads to the efficiency reduction. We will demonstrate, that in the multimode memory this interconnection has complicated character.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. K. Hammerer, A.S. Sørensen, E.S. Polzik, Rev. Mod. Phys. 82, 1041 (2010)

    Article  ADS  Google Scholar 

  2. A.I. Lvovsky, B.C. Sanders, W. Tittel, Nat. Photon. 3, 706 (2009)

    Article  ADS  Google Scholar 

  3. J. Simon, H. Tanji, J.K. Thompson, V. Vuletić, Phys. Rev. Lett. 98, 183601 (2007)

    Article  ADS  Google Scholar 

  4. C.-W. Chou, L. Laurat, H. Deng, K.S. Choi, H. de Riedmatten, D. Felinto, H.J. Kimble, Science 316, 1316 (2007)

    Article  ADS  Google Scholar 

  5. Y.-A. Chen, S. Chen, Z.S. Yuan, B. Zhao, C.S. Chuu, J. Schmiedmayer, J.-W. Pan, Nat. Phys. 4, 103 (2008)

    Article  Google Scholar 

  6. W. Tittel, M. Afzelius, T. Chaneliere, R.L. Cone, S. Kroll, S.A. Moiseev, M. Sellars, Laser Photon. Rev. 4, 244 (2010)

    Article  Google Scholar 

  7. M. Hosseini, G. Campbell, B.M. Sparkes, P.K. Lam, B.C. Buchler, Nat. Phys. 7, 794 (2011)

    Article  Google Scholar 

  8. K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B.M. Nielsen, J.M. Petersen, J.J. Renema, M.V. Balabas, M. Owari, M.B. Plenio, A. Serafini, M.M. Wolf, C.A. Muchik, J.I. Cirac, J.H. Müller, E.S Polzik, J. Phys.: Conf. Ser. 66, 275 (2012)

    Google Scholar 

  9. R.M. Camacho, P.K. Vudyasetu, J.C. Howell, Nat. Photon. 290, 103 (2008)

    Google Scholar 

  10. N.B. Phillips, A.V. Gorshkov, I. Novikova, Phys. Rev. A 83, 063823 (2011)

    Article  ADS  Google Scholar 

  11. A.J.F. de Almeida, J. Sales, M.-A. Maynard, T. Lauprétre, F. Bretenaker, D. Felinto, F. Goldfarb, J.W.R. Tabosa, Phys. Rev. A 90, 043803 (2014)

    Article  ADS  Google Scholar 

  12. T. Brannan, Z. Qin, A. MacRae, A.I. Lvovsky, Opt. Lett. 39, 18 (2014)

    Article  Google Scholar 

  13. I. Novikova, R.L. Walsworth, Y. Xiao, Laser Photon. Rev. 6, 333 (2012)

    Article  Google Scholar 

  14. N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J.A. Slater, M. George, R. Ricken, M.P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, Phys. Rev. Lett. 113, 053603 (2014)

    Article  ADS  Google Scholar 

  15. J. Borregaard, M. Zugenmaier, J.M. Petersen, H. Shen, G. Vasilakis, K. Jensen, E.S. Polzik, A.S. Sørensen, arXiv:1501.03916 [quant-ph] (2015)

  16. O. Firstenberg, M. Shuker, R. Pugatch, D.R. Fredkin, N. Davidson, A. Ron, Phys. Rev. A 77, 043830 (2008)

    Article  ADS  Google Scholar 

  17. O. Firstenberg, P. London, D. Yankelev, R. Pugatch, M. Shuker, N. Davidson, Phys. Rev. Lett. 105, 183602 (2010)

    Article  ADS  Google Scholar 

  18. X.-W. Luo, J.J. Hope, B. Hillman, T.M. Stace, Phys. Rev. A 87, 062328 (2013)

    Article  ADS  Google Scholar 

  19. S.D. Jenkins, T. Zhang, T.A.B. Kennedy, J. Phys. B 45, 124005 (2012)

    Article  ADS  Google Scholar 

  20. A.V. Gorshkov, A. André, M.D. Lukin, A.S. Sørensen, Phys. Rev. A 76, 033804 (2007)

    Article  ADS  Google Scholar 

  21. A.V. Gorshkov, A. André, M.D. Lukin, A.S. Sørensen, Phys. Rev. A 76, 033805 (2007)

    Article  ADS  Google Scholar 

  22. D.V. Vasilyev, I.V. Sokolov, E.S. Polzik, Phys. Rev. A 77, 020302 (2008)

    Article  ADS  Google Scholar 

  23. E. Zeuthen, A. Grodecka-Grad, A.S. Sørensen, Phys. Rev. A 84, 043838 (2011)

    Article  ADS  Google Scholar 

  24. J. Nunn et al., Phys. Rev. Lett. 101, 260502 (2008)

    Article  ADS  Google Scholar 

  25. K.S. Choi, H. Deng, J. Laurat, H.J. Kimble, Nature 452, 67 (2008)

    Article  ADS  Google Scholar 

  26. R. Zhao, Y.O. Dudin, S.D. Jenkins, C.J. Campbell, D.N. Matsukevich, T.A.B. Kennedy, A. Kuzmich, Nat. Phys. 5, 100 (2009)

    Article  Google Scholar 

  27. B. Zhao, Y.A. Chen, X.-H. Bao, T. Strassel, C.S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.S. Yuan, S. Chen, J.W. Pan, Nat. Phys. 5, 95 (2009)

    Article  Google Scholar 

  28. H. Tanji, S. Ghosh, J. Simon, B. Bloom, V. Vuletić, Phys. Rev. Lett. 103, 043601 (2009)

    Article  ADS  Google Scholar 

  29. L.D. Landau, E.M. Lifshitz, Statistical Physics (Butterworth, Heinemann, 1980), Part 1, Vol. 5,

  30. L. Veissier, A. Nicolas, L. Giner, D. Maxein, A.S. Sheremet, E. Giacobino, J. Laurat, Opt. Lett. 38, 712 (2013)

    Article  ADS  Google Scholar 

  31. A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, J. Laurat, Nat. Photon. 8, 234 (2014)

    Article  ADS  Google Scholar 

  32. T.Y. Golubeva, Y.M. Golubev, O. Mishina, A. Bramati, J. Laurat, E. Giacobino, Phys. Rev. A 83, 053810 (2011)

    Article  ADS  Google Scholar 

  33. T.Y. Golubeva, Y.M. Golubev, O. Mishina, A. Bramati, J. Laurat, E. Giacobino, Eur. Phys. J. D 66, 275 (2012)

    Article  ADS  Google Scholar 

  34. K. Hammerer, M.M. Wolf, E.S. Polzik, J.I. Cirac, Phys. Rev. Lett. 94, 150503 (2005)

    Article  ADS  Google Scholar 

  35. M. Owari et al., New J. Phys. 10, 113014 (2008)

    Article  ADS  Google Scholar 

  36. F. Grosshans, P. Grangier, Phys. Rev. A. 64, 010301 (2001)

    MathSciNet  Article  ADS  Google Scholar 

  37. K. Tikhonov, K. Samburskaya, T.Y. Golubeva, Y.M. Golubev, Phys. Rev. A 89, 013811 (2014)

    Article  ADS  Google Scholar 

  38. T. Golubeva, Yu. Golubev, Efficiency in multimode broadband resonant quantum memory, J. Russ. Laser Res., accepted (2015)

  39. M.V. Balabas, T. Karaulanov, M.P. Ledbetter, D. Budker, Phys. Rev. Lett. 105, 070801 (2010)

    Article  ADS  Google Scholar 

  40. M.V. Balabas, K. Jensen, W. Wasilewski, H. Krauter, L.S. Madsen, J.H. Muller, T. Fernholz, E.S. Polzik, Opt. Exp. 18, 5825 (2009)

    Article  ADS  Google Scholar 

  41. M.T. Graf, D.F. Kimball, S.M. Rochester, K. Kerner, C. Wong, D. Budker, E.B. Alexandrov, M.V. Balabas, Phys. Rev. A 72, 023401 (2005)

    Article  ADS  Google Scholar 

  42. J. Nunn, I.A. Walmsley, M.G. Raymer, K. Surmacz, F.C. Waldermann, Z. Wang, D. Jaksch, Phys. Rev. A 75, 011401 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Golubeva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, K., Golubeva, T. & Golubev, Y. Atomic thermal motion effect on efficiency of a high-speed quantum memory. Eur. Phys. J. D 69, 252 (2015). https://doi.org/10.1140/epjd/e2015-60370-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60370-6

Keywords

  • Quantum Optics