Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Atomic thermal motion effect on efficiency of a high-speed quantum memory

Abstract

We discuss the influence of atomic thermal motion on the efficiency of multimode quantum memory in two configurations: over the free expand of atoms cooled beforehand in a magneto-optical trap, and over complete mixing of atoms in a closed cell at room temperature. We consider the high-speed quantum memory, and assume that writing and retrieval are short enough, and the displacements of atoms during these stages are negligibly small. At the same time we take in account thermal motion during the storage time, which, as well known, must be much longer than durations of all the other memory processes for successful application of memory cell in communication and computation. We will analyze this influence in terms of eigenmodes of the full memory cycle and show that distortion of the eigenmodes, caused by thermal motion, leads to the efficiency reduction. We will demonstrate, that in the multimode memory this interconnection has complicated character.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K. Hammerer, A.S. Sørensen, E.S. Polzik, Rev. Mod. Phys. 82, 1041 (2010)

  2. 2.

    A.I. Lvovsky, B.C. Sanders, W. Tittel, Nat. Photon. 3, 706 (2009)

  3. 3.

    J. Simon, H. Tanji, J.K. Thompson, V. Vuletić, Phys. Rev. Lett. 98, 183601 (2007)

  4. 4.

    C.-W. Chou, L. Laurat, H. Deng, K.S. Choi, H. de Riedmatten, D. Felinto, H.J. Kimble, Science 316, 1316 (2007)

  5. 5.

    Y.-A. Chen, S. Chen, Z.S. Yuan, B. Zhao, C.S. Chuu, J. Schmiedmayer, J.-W. Pan, Nat. Phys. 4, 103 (2008)

  6. 6.

    W. Tittel, M. Afzelius, T. Chaneliere, R.L. Cone, S. Kroll, S.A. Moiseev, M. Sellars, Laser Photon. Rev. 4, 244 (2010)

  7. 7.

    M. Hosseini, G. Campbell, B.M. Sparkes, P.K. Lam, B.C. Buchler, Nat. Phys. 7, 794 (2011)

  8. 8.

    K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B.M. Nielsen, J.M. Petersen, J.J. Renema, M.V. Balabas, M. Owari, M.B. Plenio, A. Serafini, M.M. Wolf, C.A. Muchik, J.I. Cirac, J.H. Müller, E.S Polzik, J. Phys.: Conf. Ser. 66, 275 (2012)

  9. 9.

    R.M. Camacho, P.K. Vudyasetu, J.C. Howell, Nat. Photon. 290, 103 (2008)

  10. 10.

    N.B. Phillips, A.V. Gorshkov, I. Novikova, Phys. Rev. A 83, 063823 (2011)

  11. 11.

    A.J.F. de Almeida, J. Sales, M.-A. Maynard, T. Lauprétre, F. Bretenaker, D. Felinto, F. Goldfarb, J.W.R. Tabosa, Phys. Rev. A 90, 043803 (2014)

  12. 12.

    T. Brannan, Z. Qin, A. MacRae, A.I. Lvovsky, Opt. Lett. 39, 18 (2014)

  13. 13.

    I. Novikova, R.L. Walsworth, Y. Xiao, Laser Photon. Rev. 6, 333 (2012)

  14. 14.

    N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J.A. Slater, M. George, R. Ricken, M.P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, Phys. Rev. Lett. 113, 053603 (2014)

  15. 15.

    J. Borregaard, M. Zugenmaier, J.M. Petersen, H. Shen, G. Vasilakis, K. Jensen, E.S. Polzik, A.S. Sørensen, arXiv:1501.03916 [quant-ph] (2015)

  16. 16.

    O. Firstenberg, M. Shuker, R. Pugatch, D.R. Fredkin, N. Davidson, A. Ron, Phys. Rev. A 77, 043830 (2008)

  17. 17.

    O. Firstenberg, P. London, D. Yankelev, R. Pugatch, M. Shuker, N. Davidson, Phys. Rev. Lett. 105, 183602 (2010)

  18. 18.

    X.-W. Luo, J.J. Hope, B. Hillman, T.M. Stace, Phys. Rev. A 87, 062328 (2013)

  19. 19.

    S.D. Jenkins, T. Zhang, T.A.B. Kennedy, J. Phys. B 45, 124005 (2012)

  20. 20.

    A.V. Gorshkov, A. André, M.D. Lukin, A.S. Sørensen, Phys. Rev. A 76, 033804 (2007)

  21. 21.

    A.V. Gorshkov, A. André, M.D. Lukin, A.S. Sørensen, Phys. Rev. A 76, 033805 (2007)

  22. 22.

    D.V. Vasilyev, I.V. Sokolov, E.S. Polzik, Phys. Rev. A 77, 020302 (2008)

  23. 23.

    E. Zeuthen, A. Grodecka-Grad, A.S. Sørensen, Phys. Rev. A 84, 043838 (2011)

  24. 24.

    J. Nunn et al., Phys. Rev. Lett. 101, 260502 (2008)

  25. 25.

    K.S. Choi, H. Deng, J. Laurat, H.J. Kimble, Nature 452, 67 (2008)

  26. 26.

    R. Zhao, Y.O. Dudin, S.D. Jenkins, C.J. Campbell, D.N. Matsukevich, T.A.B. Kennedy, A. Kuzmich, Nat. Phys. 5, 100 (2009)

  27. 27.

    B. Zhao, Y.A. Chen, X.-H. Bao, T. Strassel, C.S. Chuu, X.-M. Jin, J. Schmiedmayer, Z.S. Yuan, S. Chen, J.W. Pan, Nat. Phys. 5, 95 (2009)

  28. 28.

    H. Tanji, S. Ghosh, J. Simon, B. Bloom, V. Vuletić, Phys. Rev. Lett. 103, 043601 (2009)

  29. 29.

    L.D. Landau, E.M. Lifshitz, Statistical Physics (Butterworth, Heinemann, 1980), Part 1, Vol. 5,

  30. 30.

    L. Veissier, A. Nicolas, L. Giner, D. Maxein, A.S. Sheremet, E. Giacobino, J. Laurat, Opt. Lett. 38, 712 (2013)

  31. 31.

    A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, J. Laurat, Nat. Photon. 8, 234 (2014)

  32. 32.

    T.Y. Golubeva, Y.M. Golubev, O. Mishina, A. Bramati, J. Laurat, E. Giacobino, Phys. Rev. A 83, 053810 (2011)

  33. 33.

    T.Y. Golubeva, Y.M. Golubev, O. Mishina, A. Bramati, J. Laurat, E. Giacobino, Eur. Phys. J. D 66, 275 (2012)

  34. 34.

    K. Hammerer, M.M. Wolf, E.S. Polzik, J.I. Cirac, Phys. Rev. Lett. 94, 150503 (2005)

  35. 35.

    M. Owari et al., New J. Phys. 10, 113014 (2008)

  36. 36.

    F. Grosshans, P. Grangier, Phys. Rev. A. 64, 010301 (2001)

  37. 37.

    K. Tikhonov, K. Samburskaya, T.Y. Golubeva, Y.M. Golubev, Phys. Rev. A 89, 013811 (2014)

  38. 38.

    T. Golubeva, Yu. Golubev, Efficiency in multimode broadband resonant quantum memory, J. Russ. Laser Res., accepted (2015)

  39. 39.

    M.V. Balabas, T. Karaulanov, M.P. Ledbetter, D. Budker, Phys. Rev. Lett. 105, 070801 (2010)

  40. 40.

    M.V. Balabas, K. Jensen, W. Wasilewski, H. Krauter, L.S. Madsen, J.H. Muller, T. Fernholz, E.S. Polzik, Opt. Exp. 18, 5825 (2009)

  41. 41.

    M.T. Graf, D.F. Kimball, S.M. Rochester, K. Kerner, C. Wong, D. Budker, E.B. Alexandrov, M.V. Balabas, Phys. Rev. A 72, 023401 (2005)

  42. 42.

    J. Nunn, I.A. Walmsley, M.G. Raymer, K. Surmacz, F.C. Waldermann, Z. Wang, D. Jaksch, Phys. Rev. A 75, 011401 (2007)

Download references

Author information

Correspondence to Tania Golubeva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, K., Golubeva, T. & Golubev, Y. Atomic thermal motion effect on efficiency of a high-speed quantum memory. Eur. Phys. J. D 69, 252 (2015). https://doi.org/10.1140/epjd/e2015-60370-6

Download citation

Keywords

  • Quantum Optics