Skip to main content
Log in

Modal properties of novel hybrid plasmonic waveguide consisting of two identical dielectric nanotubes symmetrically placed on both sides of a thin metal film

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A novel type of hybrid plasmonic waveguide consisting of two identical dielectric nanotubes symmetrically placed on both sides of a thin metal film is proposed. The propagation properties of the antisymmetric and symmetric modes are numerically analyzed at the telecommunication working wavelength. Theoretical investigations reveal that deep-subwavelength mode confinement as well as long-range propagation length can be achieved simultaneously. This structure could facilitate potential applications in long-range plasmon waveguiding and compact high-performance on-chip photonic components.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  2. E. Ozbay, Science 311, 189 (2006)

    Article  ADS  Google Scholar 

  3. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.Y. Laluet, T.W. Ebbesen, Nature 440, 508 (2006)

    Article  ADS  Google Scholar 

  4. H. Raether, Surface plasmons (Springer, Berlin, 1988)

  5. S.A. Maier, IEEE J. Sel. Top. Quantum Electron. 12, 1671 (2006)

    Article  Google Scholar 

  6. E.N. Economou, Phys. Rev. 182, 539 (1969)

    Article  ADS  Google Scholar 

  7. P. Berini, Opt. Lett. 24, 1011 (1999)

    Article  ADS  Google Scholar 

  8. P. Berini, Phys. Rev. B 61, 10484 (2000)

    Article  ADS  Google Scholar 

  9. P. Berini, Phys. Rev. B 63, 125417 (2001)

    Article  ADS  Google Scholar 

  10. J. Jung, T. Sondergaard, S.I. Bozhevolnyi, Phys. Rev. B 76, 035434 (2007)

    Article  ADS  Google Scholar 

  11. J. Guo, R. Adato, Opt. Express 16, 1232 (2008)

    Article  ADS  Google Scholar 

  12. K. Tanaka, M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003)

    Article  ADS  Google Scholar 

  13. F. Kusunoki, T. Yotsuya, J. Takahara, T. Kobayashi, Appl. Phys. Lett. 86, 211101 (2005)

    Article  ADS  Google Scholar 

  14. R. Gordon, A.G. Brolo, Opt. Express 13, 1933 (2005)

    Article  ADS  Google Scholar 

  15. D.F.P. Pile, T. Ogawa, D.K. Gramotnev, Y. Matsuzaki, K.C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, M. Fukui, Appl. Phys. Lett. 87, 261114 (2005)

    Article  ADS  Google Scholar 

  16. L. Liu, Z. Han, S. He, Opt. Express 13, 6645 (2005)

    Article  ADS  Google Scholar 

  17. W.R. Xue, Y.N. Guo, J. Zhang, W.M. Zhang, J. Lightwave Technol. 27, 2634 (2009)

    Article  ADS  Google Scholar 

  18. D.F.P. Pile, T. Ogawa, D.K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, S. Matsuo, Appl. Phys. Lett. 87, 061106 (2005)

    Article  ADS  Google Scholar 

  19. E. Moreno, S.G. Rodrigo, S.I. Bozhevolnyi, L. Martin-Moreno, F.J. Garcia-Vidal, Phys. Rev. Lett. 100, 023901 (2008)

    Article  ADS  Google Scholar 

  20. A. Boltasseva, V.S. Volkov, R.B. Nielsen, E. Moreno, S.G. Rodrigo, S.I. Bozhevolnyi, Opt. Express 16, 5252 (2008)

    Article  ADS  Google Scholar 

  21. J.Q. Lu, A.A. Maradudin, Phys. Rev. B 42, 11159 (1990)

    Article  ADS  Google Scholar 

  22. L. Chen, J. Shakya, M. Lipson, Opt. Lett. 31, 2133 (2006)

    Article  ADS  Google Scholar 

  23. D.F.P. Pile, D.K. Gramotnev, Opt. Lett. 29, 1069 (2004)

    Article  ADS  Google Scholar 

  24. J.J. Lee, J. Park, H. Kim, B. Lee, Opt. Express 15, 16596 (2007)

    Article  ADS  Google Scholar 

  25. D. Arbel, M. Orenstein, Opt. Express 16, 3114 (2008)

    Article  ADS  Google Scholar 

  26. J. Tian et al., Appl. Phys. Lett. 97, 231121 (2010)

    Article  ADS  Google Scholar 

  27. Y.S. Bian et al., J. Phys. D 45, 505105 (2012)

    Article  Google Scholar 

  28. Y.S. Bian, Z. Zheng, X. Zhao, J.S. Zhu, T. Zhou, Opt. Express 17, 21320 (2009)

    Article  ADS  Google Scholar 

  29. B.F. Yun, G.H. Hu, Y.P. Cui, Opt. Express 17, 3610 (2009)

    Article  Google Scholar 

  30. Y.S. Bian, Q.H. Gong, J. Opt. 16, 015001 (2014)

    Article  ADS  Google Scholar 

  31. L. Chen, T. Zhang, X. Li, W.P. Huang, Opt. Express 20, 20535 (2012)

    Article  ADS  Google Scholar 

  32. Y.S. Bian, Q.H. Gong, Photon. Nanostruct. 12, 259 (2014)

    Article  ADS  Google Scholar 

  33. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  34. R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, Nat. Photon. 2, 496 (2008)

    Article  Google Scholar 

  35. J.A. Dionne, L.A. Sweatlock, H.A. Atwater, Phys. Rev. B 73, 0354071 (2006)

    Article  Google Scholar 

  36. R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, Nat. Photon. 2, 496 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Sun, M. Modal properties of novel hybrid plasmonic waveguide consisting of two identical dielectric nanotubes symmetrically placed on both sides of a thin metal film. Eur. Phys. J. D 70, 4 (2016). https://doi.org/10.1140/epjd/e2015-60244-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60244-y

Keywords

Navigation