Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Light propagation inside ‘cavity’ formed between nonlinear defect and interface of two dissimilar one-dimensional linear photonic lattices

  • 95 Accesses

  • 2 Citations

Abstract

Light propagation through composite photonic lattice containing a cavity bounded by the interface between two structurally different linear lattices and on-site nonlinear defect in one of them is investigated numerically. We find conditions under which dynamically stable bounded cavity modes can exist. We observe various cavity localized modes such as: single-hump, multi-hump, and moving breathing modes. Light propagation obstructions are phenomenologically related to the Fano resonances. Presented numerical findings may lead to interesting applications, such as blocking, filtering, and transporting of light beams through the optical medium.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

  2. 2.

    S. John, Phys. Rev. Lett. 58, 2486 (1987)

  3. 3.

    J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Nature 386, 143 (1997)

  4. 4.

    X. Gan, H. Clevenson, C.-C. Tsai, L. Li, D. Englund, Sci. Rep. 3, 2145 (2013)

  5. 5.

    D.N. Christodoulides, R.I. Joseph, Opt. Lett. 13, 794 (1988)

  6. 6.

    H.S. Eisenberg, Y. Silberberg, R. Morandotti, A.R. Boyd, J.S. Aitchison, Phys. Rev. Lett. 81, 3383 (1998)

  7. 7.

    N.K. Efremidis, S. Sears, D.N. Christodoulides, J.W. Fleischer, M. Segev, Phys. Rev. E 66, 046602 (2002)

  8. 8.

    R. Iwanow, D.A. May-Arrioja, D.N. Christodoulides, G.I. Stegeman, Y. Min, W. Sohler, Phys. Rev. Lett. 95, 053902 (2005)

  9. 9.

    M. Stepić, E. Smirnov, C.E. Rüter, D. Kip, A. Maluckov, Lj. Hadžievski, Opt. Lett. 32, 823 (2007)

  10. 10.

    T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52 (2007)

  11. 11.

    Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008)

  12. 12.

    U. Peschel, R. Morandotti, J.S. Aitchison, H.S. Eisenberg, Y. Silberberg, Appl. Phys. Lett. 75, 1348 (1999)

  13. 13.

    R. Morandotti, H.S. Eisenberg, D. Mandelik, Y. Silberberg, D. Modotto, M. Sorel, C.R. Stanley, J.S. Aitchison, Opt. Lett. 28, 834 (2003)

  14. 14.

    A.E. Miroshnichenko, S. Flach, Yu.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)

  15. 15.

    U. Naether, D.E. Rivas, M.A. Larenas, M.I. Molina, R.A. Vicencio, Opt. Lett. 34, 2721 (2009)

  16. 16.

    M.I. Molina, Yu.S. Kivshar, Phys. Lett. A 362, 280 (2007)

  17. 17.

    S. Suntsov, K.G. Makris, D.N. Christodoulides, G.I. Stegeman, R. Morandotti, M. Volatier, V. Aimez, R. Ares, C.E. Rüter, D. Kip, Opt. Exp. 15, 4663 (2007)

  18. 18.

    S. Suntsov, K.G. Makris, D.N. Christodoulides, G.I. Stegeman, R. Morandotti, M. Volatier, V. Aimez, R. Ares, E.H. Yang, G. Salamo, Opt. Express 16, 10480 (2008)

  19. 19.

    A. Kanshu, C.E. Rüter, D. Kip, P.P. Beličev, I. Ilić, M. Stepić, V.M. Shandarov, Opt. Express 19, 1158 (2011)

  20. 20.

    A. Szameit, Y.V. Kartashov, F. Dreisow, M. Heinrich, V.A. Vysloukh, T. Pertsch, S. Nolte, A. Tünnermann, F. Lederer, L. Torner, Opt. Lett. 33, 663 (2008)

  21. 21.

    Y. Hu, R. Egger, P. Zhang, X.S. Wang, Z.G. Chen, Opt. Express 18, 14679 (2010)

  22. 22.

    A. Szameit, H. Trompeter, M. Heinrich, F. Dreisow, U. Peschel, T. Pertsch, S. Nolte, F. Lederer, A. Tünnermann, New J. Phys. 10, 103020 (2008)

  23. 23.

    Y. Kominis, K. Hizanidis, Phys. Rev. Lett. 102, 133903 (2009)

  24. 24.

    K. Motzek, A.A. Sukhorukov, Yu.S. Kivshar, Opt. Lett. 31, 3125 (2006)

  25. 25.

    D. Mihalache, D. Mazilu, F. Lederer, Yu.S. Kivshar, Opt. Lett. 32, 2091 (2007)

  26. 26.

    P.P. Beličev, G. Gligorić, A. Maluckov, M. Stepić, Eur. Phys. Lett. 104, 14006 (2013)

  27. 27.

    Y. Kubota, T. Odagaki, Phys. Rev. E 71, 016605 (2005)

  28. 28.

    L. Pang, W. Nakagawa, Y. Fainman, Appl. Opt. 42, 5450 (2003)

  29. 29.

    W. Krolikowski, Yu.S. Kivshar, J. Opt. Soc. Am. B 13, 876 (1996)

  30. 30.

    S. Noda, M. Fujita, T. Asano, Nat. Photon 1, 449 (2007)

  31. 31.

    R.W. Ziolkowski, M. Tanaka, Opt. Quant. Electron 31, 843 (1999)

  32. 32.

    M. Maldovan, E.L. Thomas, Appl. Phys. B 83, 595 (2006)

  33. 33.

    Y.Y. Li, W. Pang, Y.Z. Chen, Z.Q. Yu, J.Y. Zhou, H.R. Zhang, Phys. Rev. A 80, 043824 (2009)

  34. 34.

    J.D. Wang, J.K. Yang, Z.G. Chen, Phys. Rev. A 76, 013828 (2007)

  35. 35.

    A. Trombettoni, A. Smerzi, A.R. Bishop, Phys. Rev. E 67, 016607 (2003)

  36. 36.

    V.A. Brazhnyi, M. Salerno, Phys. Rev. A 83, 053616 (2011)

  37. 37.

    V.A. Brazhnyi, B.A. Malomed, Phys. Rev. A 83, 053844 (2011)

  38. 38.

    S. Kuzmanović, M. Stojanović Krasić, D. Milović, A. Radosavljević, G. Gligorić, A. Maluckov, M. Stepić, Phys. Scr. 90, 025505 (2015)

  39. 39.

    G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. Fejer, M. Bashaw, Phys. Rev. A 50, R4457 (1994)

  40. 40.

    M. Taya, M. Bashaw, M. Fejer, M. Segev, G.C. Valley, Phys. Rev. A 52, 3095 (1995)

  41. 41.

    Z. Chen, M. Segev, D.W. Wilson, R.E. Muller, P.D. Maker, Phys. Rev. Lett. 78, 2948 (1997)

  42. 42.

    M. Stepić, D. Kip, Lj. Hadžievski, and A. Maluckov, Phys. Rev. E 69, 066618 (2004).

  43. 43.

    A. Radosavljević, G. Gligorić, A. Maluckov, M. Stepić, D. Milović, J. Opt. Soc. Am. B 30, 2340 (2013)

  44. 44.

    M. Stepić, E. Smirnov, C.E. Rüter, L. Prönneke, D. Kip, V. Shandarov, Phys. Rev. E 74, 046614 (2006)

  45. 45.

    Y. Tan, F. Chen, M. Stepić, V. Shandarov, D. Kip, Opt. Exp. 16, 10465 (2008)

  46. 46.

    R. Guo, H.-Q. Hao, Commun. Nonlin. Sci. Numer. Simul. 18, 2426 (2013)

  47. 47.

    A.A. Sukhorukov, Opt. Lett. 35, 989 (2010)

Download references

Author information

Correspondence to Aleksandra Maluckov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuzmanović, S., Stojanović Krasić, M., Milović, D. et al. Light propagation inside ‘cavity’ formed between nonlinear defect and interface of two dissimilar one-dimensional linear photonic lattices. Eur. Phys. J. D 69, 207 (2015). https://doi.org/10.1140/epjd/e2015-60243-0

Download citation

Keywords

  • Optical Phenomena and Photonics