How many orthonormal bases are needed to distinguish all pure quantum states?

  • Claudio Carmeli
  • Teiko Heinosaari
  • Jussi Schultz
  • Alessandro Toigo
Topical Review

Abstract

We collect some recent results that together provide an almost complete answer to the question stated in the title. For the dimension d = 2 the answer is three. For the dimensions d = 3 and d ≥ 5 the answer is four. For the dimension d = 4 the answer is either three or four. Curiously, the exact number in d = 4 seems to be an open problem.

Graphical abstract

References

  1. 1.
    W. Pauli, Die allgemeinen Prinzipen der Wellenmechanik. in Handbuch der Physik, edited by H. Geiger, K. Scheel (Springer-Verlag, Berlin, 1933), Vol. 24Google Scholar
  2. 2.
    H. Reichenbach, Philosophic Foundations of Quantum Mechanics (University of California Press, Berkeley, 1944) Google Scholar
  3. 3.
    D. Goyeneche, G. Cañas, S. Etcheverry, E. S. Gómez, G. B. Xavier, G. Lima, A. Delgado, arXiv:1411.2789 [quant-ph] (2014) Google Scholar
  4. 4.
    A. Vogt, Position and momentum distributions do not determine the quantum mechanical state, in Mathematical Foundations of Quantum Theory, edited by A.R. Marlow (Academic Press, New York, 1978) Google Scholar
  5. 5.
    B.Z. Moroz, Int. J. Theoret. Phys. 22, 329 (1983)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    B.Z. Moroz, Erratum, Int. J. Theoret. Phys. 22, 329 (1983)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    B.Z. Moroz, Int. J. Theoret. Phys. 23, 497 (1984)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    B.Z. Moroz, A.M. Perelomov, Theor. Math. Phys. 101, 1200 (1994) MathSciNetGoogle Scholar
  9. 9.
    T. Heinosaari, L. Mazzarella, M.M. Wolf, Commun. Math. Phys. 318, 355 (2013) MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    D. Mondragon, V. Voroninski, arXiv:1306.1214 [math-ph] (2013)Google Scholar
  11. 11.
    P. Jaming, Appl. Comput. Harmonic Anal. 37, 413 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    P. Busch, P. Lahti, Found. Phys. 19, 633 (1989)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    A. Komisarski, A. Paszkiewicz, Inf. Dimensional Analysis, Quantum Probability and Related Topics 16 1350026 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Finkelstein, Phys. Rev. A 70, 052107 (2004) MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    G. Szegö, Orthogonal Polynomials, 4th edn. (American Mathematical Society, 1975)Google Scholar
  16. 16.
    M. Kech, P. Vrana, M.M. Wolf. J. Phys. A: Math. Theor. 48, 265303 (2015) MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    J.M. Lee, Manifolds and Differential Geometry, volume 107 of Graduate Studies in Mathematics (American Mathematical Society, Providence, RI, 2009)Google Scholar
  18. 18.
    K.H. Mayer, Topology 4, 295 (1965)MathSciNetCrossRefGoogle Scholar
  19. 19.
    K.G.H. Vollbrecht, R.F. Werner, J. Math. Phys. 41, 6772 (2000) MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, Applied Mathematical Sciences, 2nd edn. (Springer-Verlag, 1988), Vol. 75 Google Scholar
  21. 21.
    M. Mahowald, Proc. Amer. Math. Soc. 13, 763 (1962)MathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Levine, Proc. Amer. Math. Soc. 14, 801 (1963)MathSciNetCrossRefGoogle Scholar
  23. 23.
    W. Stulpe, M. Singer, Found. Phys. Lett. 3, 153 (1990)MathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Weigert, Phys. Rev. A 45, 7688 (1992) CrossRefADSGoogle Scholar
  25. 25.
    S. Flammia, A. Silberfarb, C. Caves, Found. Phys. 35, 1985 (2005) MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    T. Kato, Perturbation Theory For Linear Operators (Springer-Verlag, Berlin, 1995). Reprint of the 1980 edition Google Scholar
  27. 27.
    K. Vogel, H. Risken, Phys. Rev. A 40, 2847 (1989) CrossRefADSGoogle Scholar
  28. 28.
    C. Carmeli, T. Heinosaari, J. Schultz, A. Toigo, Appl. Comput. Harm. Anal. (2015), in press, arXiv:1411.6874Google Scholar
  29. 29.
    S. Anreys, P. Jaming, arXiv:1501.03905 [math.CA] (2015)Google Scholar
  30. 30.
    G. Pedersen, Analysis Now (Springer-Verlag, New York, 1989)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Claudio Carmeli
    • 1
  • Teiko Heinosaari
    • 2
  • Jussi Schultz
    • 2
    • 3
  • Alessandro Toigo
    • 3
    • 4
  1. 1.DIMEUniversità di GenovaSavonaItaly
  2. 2.Turku Centre for Quantum Physics, Department of Physics and AstronomyUniversity of TurkuTurkuFinland
  3. 3.Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly
  4. 4.Sezione di MilanoI.N.F.N.MilanoItaly

Personalised recommendations