Skip to main content
Log in

Modified Schrödinger dynamics with attractive densities

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The linear Schrödinger equation does not predict that macroscopic bodies should be located at one place only, or that the outcome of a measurement shoud be unique. Quantum mechanics textbooks generally solve the problem by introducing the projection postulate, which forces definite values to emerge during measurements; many other interpretations have also been proposed. Here, in the same spirit as the GRW and CSL theories, we modify the Schrödinger equation in a way that efficiently cancels macroscopic density fluctuations in space. Nevertheless, we do not assume a stochastic dynamics as in GRW or CSL theories. Instead, we propose a deterministic evolution that includes an attraction term towards the averaged density in space of the de Broglie-Bohm position of particles, and show that this is sufficient to ensure macroscopic uniqueness and compatibility with the Born rule. The state vector can then be seen as directly related to physical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, Die gegenwärtige situation in quantum mechanics, Naturwissenchaften 23, 807 (1935)

    Article  ADS  Google Scholar 

  2. E. Schrödinger, Die gegenwärtige situation in quantum mechanics, Naturwissenchaften 23, 823 (1935)

    Article  ADS  Google Scholar 

  3. E. Schrödinger, Die gegenwärtige situation in quantum mechanics, Naturwissenchaften 23, 844 (1935); see also [4, 5]

    Article  ADS  Google Scholar 

  4. J.D. Trimmer, The present situation in quantum mechanics: a translation of Schrödinger’s cat paradox paper, Proc. Amer. Phis. Soc. 124, 323 (1980)

    Google Scholar 

  5. Quantum Theory and Measurement, edited by J.A. Wheeler, W.H. Zurek (Princeton University Press, 1983), pp. 152–167

  6. W. Heisenberg, Über den anschaulichen Inhalt ther quantentheoretischen Kinematik und Mechanik, Z. Phys. 43, 172 (1927)

    Article  MATH  ADS  Google Scholar 

  7. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, 1932)

  8. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, 1955)

  9. M. Jammer, The Conceptual Development of Quantum Mechanics (McGraw Hill, 1966)

  10. H. Everett III, Relative state formulation of quantum mechanics, Rev. Mod. Phys. 29, 454 (1957)

  11. For a review, see for instance F. Laloë, Do we Really Understand Quantum Mechanics? (Cambridge University Press, 2012)

  12. L. de Broglie, La mécanique ondulatoire et la structure atomique de la matière et du rayonnement, J. Phys. Radium 8, 225 (1927)

    Article  MATH  Google Scholar 

  13. D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables, Phys. Rev. 85, 166 (1952)

    Article  MATH  ADS  Google Scholar 

  14. D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables, Phys. Rev. 85, 180 (1952)

    Article  ADS  Google Scholar 

  15. P. Holland, The Quantum Theory of Motion (Cambridge University Press, 1993)

  16. D. Dürr, S. Goldstein, N. Zanghi, Quantum Physics Without Quantum Philosophy (Springer, 2013)

  17. G. Ghirardi, A. Rimini, T. Weber, Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D 34, 470 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. P. Pearle, Combining stochastic dynamical state-vector reduction with spontaneous localization, Phys. Rev. A 39, 2277 (1989)

    Article  ADS  Google Scholar 

  19. G. Ghirardi, P. Pearle, A. Rimini, Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles, Phys. Rev. A 42, 78 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Bassi, G. Ghirardi, Dynamical reduction models, Phys. Rep. 379, 257 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. M.D. Towler, N.J. Russell, A. Valentini, Time scales for dynamical relaxation to the Born rule, Proc. Roy. Soc. A 468, 990 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Kozuma, L. Deng, E. Hagley, J. Wen, R. Lutwak, H. Helmerson, S. Rolston, W. Philips, Coherent splitting of Bose-Einstein condensed atoms with optically induced Bragg diffraction, Phys. Rev. Lett. 82, 871 (1999)

    Article  ADS  Google Scholar 

  23. E. Hagley, L. Deng, M. Kozuma, M. Trippenbach, Y. Band, M. Edwards, M. Doery, P. Julienne, K. Helmerson, S. Rolston, W. Philips, Measurement of the coherence of a Bose-Einstein condensate, Phys. Rev. Lett. 83, 3112 (1999)

    Article  ADS  Google Scholar 

  24. R. Omnès, Note sur un mécanisme possible du collapse, unpublished (2014)

  25. W.H. Zurek, Decoherence, einselection, and the quantum origin of the classical, Rev. Mod. Phys. 75, 715 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. W.H. Zurek, Environment-asssited invariance, entanglement, and probabilites in quantum physics, Phys. Rev. Lett. 90, 120404 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  27. N. Gisin, Quantum measurements and stochastic processes, Phys. Rev. Lett. 52, 1657 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  28. N. Gisin, A simple nonlinear dissipative quantum evolution equation, J. Phys. A: Math. Gen. 14, 2259 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. N. Gisin, Irreversible quantum dynamics and the Hilbert space structure of quantum mechanics, J. Math. Phys. 24, 1779 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  30. V. Allori, S. Goldstein, R. Tumulka, N. Zhanghi, On the common structure of Bohmian mechanics and the Ghirardi-Rimini-Weber theory, Br. J. Philos. Sci. 59, 353 (2008) – see in particular Section 7.2

    Article  MATH  Google Scholar 

  31. D. Bedingham, Hidden variable interpretation of spontaneous localization theory, J. Phys. A 44, 275303 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  32. R. Tumulka, Comment on Hidden variable interpretation of spontaneous localization theory, J. Phys. A 44, 478001 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Leggett, Testing the limits of quantum mechanics: motivations, states of play, prospects, J. Phys.: Condens. Matter 14, R415 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Laloë.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laloë, F. Modified Schrödinger dynamics with attractive densities. Eur. Phys. J. D 69, 162 (2015). https://doi.org/10.1140/epjd/e2015-60222-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60222-5

Keywords

Navigation