Skip to main content
Log in

A simple thermodynamic model of diluted hydrogen gas/plasma for CFD applications

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This work describes a simple thermodynamic model of the hydrogen gas at low densities and for temperatures going from those involving quantum rotations of ortho- and para-hydrogen up to the fully ionized state. The closed-form energy levels of Morse rotating oscillator given [D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy (Dover, New York, 1989)] (but not those in Morse’s original paper) are shown to provide an internal partition function of H2 that is a sufficiently accurate representation of that exploiting the state-of-the-art spectrum of roto-vibrational levels calculated by Pachucki and Komasa [K. Pachucki, J. Komasa, J. Chem. Phys. 130, 164113 (2009)]. A system of two coupled quadratic equations for molecular dissociation and atomic ionization at thermodynamical and chemical equilibrium is derived according to the statistical mechanics by assuming that the system is an ideal mixture containing molecules, neutral atoms and noninteracting protons and electrons. The system of two equations reduces to a single quartic equation for the ionization unknown, with the coefficients dependent on the temperature and the specific volume. Explicit relations for specific energy and entropy of the hydrogen ideal gas/plasma model are derived. These fully compatible equations of state provide a complete thermodynamic description of the system, uniformly valid from low temperatures up to a fully ionized state, with electrons and ions relaxed to one and the same temperature. The comparison with results of other models developed in the framework of the physical and chemical pictures shows that the proposed elementary model is adequate for computational fluid dynamics purposes, in applications with the hydrogen gas under diluted conditions and when the dissociation and ionization can be assumed at thermodynamical and chemical equilibrium.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (John Wiley & Sons, New York, 1988)

  2. R. Kubo, Statistical Mechanics (North-Holland Publishing Company, Amsterdam, 1965)

  3. J. Lighthill, J. Fluid Mech. 2, 1 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  4. W.G. Vincenti, C.H. Kruger, Introduction to Physical Gas Dynamics (John Wiley, New York, 1965)

  5. P.M. Morse, Phys. Rev. 34, 57 (1929)

    Article  MATH  ADS  Google Scholar 

  6. F.J. Gordillo-Vázquez, J.A. Kunc, J. Appl. Phys. 84, 4693 (1998)

    Article  ADS  Google Scholar 

  7. L.D. Landau, E.M. Lifshitz, Statistical Physics (Elsevier, Oxford, 1980), Part. 1

  8. D.G. Hummer, D. Mihalas, ApJ 331, 794 (1988)

    Article  ADS  Google Scholar 

  9. D. Mihalas, W. Däppen, D.G. Hummer, ApJ 331, 815 (1988)

    Article  ADS  Google Scholar 

  10. A. Alastuey, V. Ballenegger, F. Cornu, Ph.A. Martin, J. Stat. Phys. 130, 1119 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. A. Alastuey, V. Ballenegger, Contrib. Plasma Phys. 52, 95 (2012)

    Article  ADS  Google Scholar 

  12. Ya.B. Zel’dovich, Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1967)

  13. K. Pachucki, J. Komasa, J. Chem. Phys. 130, 164113 (2009)

    Article  ADS  Google Scholar 

  14. D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy (Dover, New York, 1989)

  15. E. Fermi, Z. Phys. 26, 54 (1924)

    Article  MATH  ADS  Google Scholar 

  16. Y. Babou, Ph. Rivière, M.-Y. Perrin, A. Soufiani, Int. J. Thermphys. 30, 416 (2009)

    Article  ADS  Google Scholar 

  17. G.A. Blake, Lecture # 7 (2009), www.gps.caltech.edu/˜gab/ch21b/lectures/lecture07.pdf,

  18. G.V. Yukhnevich, Dokl. Phys. 45, 201 (2000)

    Article  ADS  Google Scholar 

  19. D. Bruno, F. Esposito, V. Giovangigli, J. Chem. Phys. 138, 084302 (2013)

    Article  ADS  Google Scholar 

  20. M. Capitelli, G. Colonna, A. D’Angola, Fundamental Aspects of Plasma Chemical Physics, Thermodynamics (Springer, New York, 2011)

  21. J.M.L. Martin, J.P. Francois, R. Gijbels, J. Chem. Phys. 96, 7633 (1992)

    Article  ADS  Google Scholar 

  22. G. Emanuel, Advanced Classical Thermodynamics (AIAA Education Series, Washington D.C., 1987)

  23. W. Grimus, arXiv:1112.3748v1 [physics.hist-ph] (2011)

  24. M.R. Zaghloul, Phys. Plasmas 17, 062701 (2010)

    Article  ADS  Google Scholar 

  25. A.Y. Potekhin, Phys. Plasmas 17, 124705 (2010)

    Article  ADS  Google Scholar 

  26. M.R. Zaghloul, Phys. Plasmas 17, 124706 (2010)

    Article  ADS  Google Scholar 

  27. Don Herbison-Evans, Technical Report TR94-487, Basser Department of Computer Science, University of Sydney (2011)

  28. T.L. Hill, Statistical Mechanics, Principles and Selected Applications (Dover, New York, 1987)

  29. R.T. Jacobsen, J.W. Leachman, S.G. Penoncello, E.W. Lemmon, Int. J. Thermophys. 28, 758 (2007)

    Article  ADS  Google Scholar 

  30. J.W. Leachman, R.T. Jacobsen, S.G. Penoncello, E.W. Lemmon, J. Phys. Chem. Ref. Data 38, 721 (2009)

    Article  ADS  Google Scholar 

  31. R.J. Le Roy, S.G. Chapman, F.R.W. McCourt, J. Phys. Chem. 94, 923 (1990)

    Article  Google Scholar 

  32. A.Y. Poteckhin, Phys. Plasmas 3, 4156 (1996)

    Article  ADS  Google Scholar 

  33. M. MacLean, A. Dufrene, T. Wadhams, M. Holden, AIAA 2010-1562, 48th Aerospace Sciences Meeting, Orlando (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Quartapelle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quartapelle, L., Muzzio, A. A simple thermodynamic model of diluted hydrogen gas/plasma for CFD applications. Eur. Phys. J. D 69, 156 (2015). https://doi.org/10.1140/epjd/e2015-60124-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60124-6

Keywords

Navigation