Abstract
It is well known that nanosecond laser produced plasmas (LPPs) produce high kinetic energy ions when they expand to vacuum. The acceleration process is nowadays accepted to be due to the formation of a sharp double layer (DL) in the plasma-vacuum boundary. With the purpose of studying this acceleration process, kinetic energy spectra of the plasma ions are measured for each charge state separately. Experimental results are obtained by irradiating planar targets of Cu, Co and Al at a laser wavelength of 532 nm and fluences up to 58.1 J cm-2. The obtained results show two new insights in the ion energy spectra. Firstly, they are non-maxwellian despite the widely accepted local thermal equilibrium in these type of plasmas. Secondly they show non-expected bicomponents distributions. The average energy of each species does not vary linearly with the charge state, suggesting complex acceleration processes.
This is a preview of subscription content, access via your institution.
References
D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994)
H.G. Rubahn, Laser Applications in Surface Science and Technology (Wiley, 1996)
J.R. Freeman, S. Harilal, T. Sizyuk, A. Hassanein, B. Rice, in SPIE Proceedings 0277786X, edited by P.P. Naulleau, O.R. Wood II, 8322, 83220H (SPIE, 2012)
F. Brunel, Phys. Rev. Lett. 59, 6 (1987)
S. Eliezer, H. Hora, Phys. Rep. 172, 339 (1989)
D. Umstadter, J. Phys. D 36, R151 (2003)
S. Wilks, W. Kruer, M. Tabak, A. Langdon, Phys. Rev. Lett. 69, 1383 (1992)
T. Fujimoto, in Plasma Spectroscopy (Springer, 2008), p. 29
T. Efthimiopoulos, D. Dogas, I. Palli, C. Gravalidis, M. Campbell, Appl. Phys. A 71, 325 (2000)
M.M. Polek, S. Harilal, A. Hassanein, Appl. Opt. 51, 498 (2012)
J. Apinaniz, R. Martinez, Plasma Sci. IEEE Trans. Plasma Sci. 39, 2928 (2011)
L.P. Block, Astrophys. Space Sci. 55, 59 (1978)
J.E. Crow, P.L. Auer, J.E. Allen, J. Plasma Phys. 14, 65 (1975)
P. Mora, Phys. Rev. Lett. 90, 185002 (2003)
N.M. Bulgakova, A.V. Bulgakov, O.F. Bobrenok, Phys. Rev. E 62, 5624 (2000)
F. Caridi, L. Torrisi, L. Giuffrida, Nucl. Instrum. Methods Phys. Res. B 268, 499 (2010)
J.I. Apiñaniz, B. Sierra, R. Martínez, A. Longarte, C. Redondo, F. Castaño, J. Phys. Chem. C 112, 16556 (2008)
J. Apinaniz, J.I. Apiñaniz, F.J. Gordillo-Vázquez, R. Martínez, Plasma Sources Sci. Tech. 21, 015016 (2012)
Handbook of Chemistry and Physics”, edited by D.R. Lide (CRC Press, Boca Raton, FL, 2005)
M.N. Saha, Philos. Mag. Ser. 6 40, 472 (1920)
M.N. Saha, Proc. R. Soc. A Math. Phys. Eng. Sci. 99, 135 (1921)
G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, N. Omenetto, Spectrochim. Acta Part B At. Spectrosc. 65, 86 (2010)
T. Fujimoto, R.W.P. McWhirter, Phys. Rev. A 42, 6588 (1990)
N. Gambino, Ph.D. thesis, 2010
D. Colombant, G.F. Tonon, J. Appl. Phys. 44, 3524 (1973)
S. Harilal, B. O’Shay, M.S. Tillack, M.V. Mathew, J. Appl. Phys. 98, 13306 (2005)
J.I. Apinaniz, R. Martinez, IEEE Trans. Plasma Sci. 39, 2928 (2011)
Xianfan Xu, D.A. Willis, J. Heat Transfer 124, 293 (2002)
N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 77, 199 (2001)
A. Miotello, R. Kelly, Appl. Phys. A 69, 567 (1999)
Xianfan Xu, K.H. Song, Mater. Sci. Eng. A 292, 162 (2000)
Xianfan Xu, J. Heat Transfer. 124, 293 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Apiñaniz, J., Peralta Conde, A. & Martínez Perez de Mendiola, R. Experimental observation of the ion energy spectra of Al, Co, and Cu laser produced plasmas. Eur. Phys. J. D 69, 265 (2015). https://doi.org/10.1140/epjd/e2015-60109-5
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjd/e2015-60109-5