Skip to main content
Log in

On the use of additivity rules to estimate electron production cross sections in proton-biomolecule collisions

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Additivity rules are employed to estimate electron production cross sections for proton collisions with nucleobases and amino acids, using as input experimental data for proton collisions with atoms and small molecules. Cross sections (total and single differential, in electron energy) are calculated for collision energies 10 keV ≤ E ≤ 2 MeV. The results show that this simple procedure yields cross sections in good agreement with the available experimental and theoretical cross sections at high collision energies and it is able to reproduce the energy dependence of the total cross sections, including the presence of maxima at intermediate energies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Incerti et al., Med. Phys. 37 (2010)

  2. M.U. Bug, E. Gargioni, H. Nettelbeck, W.Y. Baek, G. Hilgers, A.B. Rosenfeld, H. Rabus, Phys. Rev. E 88, 043308 (2013)

    Article  ADS  Google Scholar 

  3. H. Lekadir, I. Abbas, C. Champion, O. Fojón, R.D. Rivarola, J. Hanssen, Phys. Rev. A 79, 062710 (2009)

    Article  ADS  Google Scholar 

  4. C. Champion, H. Lekadir, M.E. Galassi, O. Fojón, R.D. Rivarola, J. Hanssen, Phys. Med. Biol. 55, 6053 (2010)

    Article  Google Scholar 

  5. M.E. Galassi, C. Champion, P.F. Weck, R.D. Rivarola, O. Fojón, J. Hanssen, Phys. Med. Biol. 57, 2081 (2012)

    Article  Google Scholar 

  6. P. de Vera, R. Garcia-Molina, I. Abril, A.V. Solov’yov, Phys. Rev. Lett. 110, 148104 (2013)

    Article  ADS  Google Scholar 

  7. J. Tabet, S. Eden, S. Feil, H. Abdoul-Carime, B. Farizon, M. Farizon, S. Ouaskit, T.D. Märk, Phys. Rev. A 81, 012711 (2010)

    Article  ADS  Google Scholar 

  8. Y. Iriki, Y. Kikuchi, M. Imai, A. Itoh, Phys. Rev. A 84, 032704 (2011)

    Article  ADS  Google Scholar 

  9. Y. Iriki, Y. Kikuchi, M. Imai, A. Itoh, Phys. Rev. A 84, 052719 (2011)

    Article  ADS  Google Scholar 

  10. A. Itoh, Y. Iriki, M. Imai, C. Champion, R.D. Rivarola, Phys. Rev. A 88, 052711 (2013)

    Article  ADS  Google Scholar 

  11. L.H. Toburen, W.E. Wilson, J. Chem. Phys. 66, 5202 (1977)

    Article  ADS  Google Scholar 

  12. L. Nagy, L. Végh, Phys. Rev. A 46, 284 (1992)

    Article  ADS  Google Scholar 

  13. Y. Jiang, J. Sun, L. Wan, J. Phys. B 30, 5025 (1997)

    Article  ADS  Google Scholar 

  14. F. Blanco, G. García, Phys. Lett. A 330, 230 (2004)

    Article  ADS  Google Scholar 

  15. F. Blanco, G. García, J. Phys. B 42, 145203 (2009)

    Article  ADS  Google Scholar 

  16. M.E. Rudd, T.V. Goffe, R.D. DuBois, L.H. Toburen, Phys. Rev. A 31, 492 (1985)

    Article  ADS  Google Scholar 

  17. T. Kirchner, H.J. Lüdde, M. Horbatsch, R.M. Dreizler, Phys. Rev. A 61, 052710 (2000)

    Article  ADS  Google Scholar 

  18. P.D. Fainstein, G.H. Olivera, R.D. Rivarola, Nucl. Instrum. Methods B 107, 19 (1996)

    Article  ADS  Google Scholar 

  19. C.C. Montanari, J.E. Miraglia, J. Phys. B 47, 015201 (2014)

    Article  ADS  Google Scholar 

  20. M. Galassi, R. Rivarola, M. Beuve, G. Olivera, P. Fainstein, Phys. Rev. A 62, 022701 (2000)

    Article  ADS  Google Scholar 

  21. C. Illescas, L.F. Errea, L. Méndez, B. Pons, I. Rabadán, A. Riera, Phys. Rev. A 83, 052704 (2011)

    Article  ADS  Google Scholar 

  22. M.A. Bolorizadeh, M.E. Rudd, Phys. Rev. A 33, 888 (1986)

    Article  ADS  Google Scholar 

  23. M.E. Rudd, Y.K. Kim, D.H. Madison, J.W. Gallagher, Rev. Mod. Phys. 57, 965 (1985)

    Article  ADS  Google Scholar 

  24. M.K. Shukla, J. Leszczynski, Wiley Interdisciplinary Reviews: Computational Molecular Science 3, 637 (2013)

    Google Scholar 

  25. C. Champion et al., J. Phys.: Conf. Ser. 488, 012038 (2014)

    ADS  Google Scholar 

  26. J.S. Kwiatkowski, J. Leszczyński, J. Phys. Chem. 100, 941 (1996)

    Article  Google Scholar 

  27. W.E. Wilson, L.H. Toburen, Phys. Rev. A 11, 1303 (1975)

    Article  ADS  Google Scholar 

  28. M.E. Rudd, Y.K. Kim, D.H. Madison, T.J. Gay, Rev. Mod. Phys. 64, 441 (1992)

    Article  ADS  Google Scholar 

  29. M. Rudd, Phys. Rev. A 38, 6129 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Méndez.

Additional information

Contribution to the Topical Issue “COST Action Nano- IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy”, edited by Andrey Solov’yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paredes, S., Illescas, C. & Méndez, L. On the use of additivity rules to estimate electron production cross sections in proton-biomolecule collisions. Eur. Phys. J. D 69, 178 (2015). https://doi.org/10.1140/epjd/e2015-60106-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60106-8

Keywords

Navigation