Skip to main content
Log in

Circular polarization of the Lyman-α 1 line radiation emitted by longitudinally-polarized electron impact excitation: effects of Breit interaction and radiation multipoles

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Detailed calculations are carried out for the longitudinally-polarized electron impact excitation cross sections from the ground state 1s 1/2 to the individual magnetic sublevels of the excited state 2p 3/2 of highly charged H-like ions using a fully relativistic distorted-wave method. The influence of the Breit interaction and radiation multipoles on the circular polarization of X-ray radiation are investigated systematically. Our results show that the Breit interaction, as the dominant correction to the Coulomb interaction, may lead to a considerable change in the magnetic sublevels cross sections and circular polarizations of Lyman-α 1 (2p 3/2 → 1s 1/2) line radiation with a more pronounced effect at higher incident energies and/or atomic numbers. Moreover, the interference between the electric dipole (E1) decay and the magnetic quadrupole (M2) decay may significantly alter the circular polarizations of the emitted X-rays. The circular polarizations of the Lyman-α 1 line are exhibit a different behavior than the linear polarizations for the same transition line regarding the radiative electron capture [Weber et al., Phys. Rev. Lett. 105, 243002 (2010)], radiative recombination [Bettadj et al., J. Phys. B 47, 105205 (2014)], and electron-impact excitation processes [Chen et al., Phys. Rev. A. 90, 012703 (2014)].

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Matula, S. Fritzsche, F.J. Currell, A. Surzhykov, Phys. Rev. A 84, 052723 (2011)

    Article  ADS  Google Scholar 

  2. A. Gumberidze et al. Phys. Rev. Lett. 110, 213201 (2013)

    Article  ADS  Google Scholar 

  3. A. Surzhykov, S. Fritzsche, T. Stölker, Hyperfine Interact. 35, 146 (2003)

    Google Scholar 

  4. Y.L. Shi, C.Z. Dong, X.Y. Ma, Z.W. Wu, L.Y. Xie, S. Fritzsche, Chin. Phys. Lett. 30, 063401 (2013)

    Article  ADS  Google Scholar 

  5. M.K. Inal, J. Dubau, Phys. Rev. A 47, 4794 (1993)

    Article  ADS  Google Scholar 

  6. M.K. Inal, J. Dubau, J. Phys. B 20, 4221 (1987)

    Article  ADS  Google Scholar 

  7. E. Takács, E.S. Meyer, J.D. Gillaspy, J.R. Roberts, C.T. Chantler, L.T. Hudson, R.D. Deslattes, C.M. Brown, J.M. Laming, J. Dubau, M.K. Inal, Phys. Rev. A 54, 1342 (1996)

    Article  ADS  Google Scholar 

  8. N. Nakamura, D. Kato, N. Miura, T. Nakahara, S. Ohtani, Phys. Rev. A 63, 024501 (2001)

    Article  ADS  Google Scholar 

  9. L. Sharma, A. Surzhykov, R. Srivastava, S. Fritzsche, Phys. Rev. A 83, 062701 (2011)

    Article  ADS  Google Scholar 

  10. Z.B. Chen, J.L. Zeng, C.Z. Dong, J. Phys. B 48, 045202 (2015)

    Article  ADS  Google Scholar 

  11. D.L. Robbins et al., Phys. Rev. A 74, 022713 (2006)

    Article  ADS  Google Scholar 

  12. P. Beiersdorfer, G. Brown, S. Utter, P. Neill, K.J. Reed, A.J. Smith, R.S. Thoe, Phys. Rev. A 60, 4156 (1999)

    Article  ADS  Google Scholar 

  13. K.J. Reed, M.H. Chen, Phys. Rev. A 48, 3644 (1993)

    Article  ADS  Google Scholar 

  14. C.J. Bostock, D.V. Fursa, I. Bray, Phys. Rev. A 80, 052708 (2009)

    Article  ADS  Google Scholar 

  15. C.J. Fontes, H.L. Zhang, D.H. Sampson, Phys. Rev. A 59, 295 (1999)

    Article  ADS  Google Scholar 

  16. Z.W. Wu, J. Jiang, C.Z. Dong, Phys. Rev. A 84, 032713 (2011)

    Article  ADS  Google Scholar 

  17. N. Nakamura, A.P. Kavanagh, H. Watanabe, H.A. Sakaue, Y. Li, D. Kato, F.J. Currell, S. Ohtani, Phys. Rev. Lett. 100, 073203 (2008)

    Article  ADS  Google Scholar 

  18. Z. Hu, X. Han, Y. Li, D. Kato, X. Tong, N. Nakamura, Phys. Rev. Lett. 108, 073002 (2012)

    Article  ADS  Google Scholar 

  19. S. Fritzsche, A. Surzhykov, T. Stölker, Phys. Rev. Lett. 103, 113001 (2009)

    Article  ADS  Google Scholar 

  20. R.E. Marrs, S.R. Elliott, D.A. Knapp, Phys. Rev. Lett. 72, 4082 (1994)

    Article  ADS  Google Scholar 

  21. C.J. Fontes, D.H. Sampson, H.L. Zhang, Phys. Rev. A 51, R12 (1995)

    Article  ADS  Google Scholar 

  22. S. Fritzsche, N.M. Kabachnik, A. Surzhykov, Phys. Rev. A 78, 032703 (2008)

    Article  ADS  Google Scholar 

  23. Z.B. Chen, C.Z. Dong, L.Y. Xie, J. Jiang, Phys. Rev. A 90, 012703 (2014)

    Article  ADS  Google Scholar 

  24. D. Bernhardt et al., Phys. Rev. A 83, 020701(R) (2011)

    Article  ADS  Google Scholar 

  25. J. Jiang, C.Z. Dong, L.Y. Xie, J.G. Wang, Phys. Rev. A 78, 022709 (2008)

    Article  ADS  Google Scholar 

  26. P. Amaro, F. Fratini, S. Fritzsche, P. Indelicato, J.P. Santos, A. Surzhykov, Phys. Rev. A 86, 042509 (2012)

    Article  ADS  Google Scholar 

  27. Z.W. Wu, C.Z. Dong, J. Jiang, Phys. Rev. A 86, 022712 (2012)

    Article  ADS  Google Scholar 

  28. T. Kai, S. Nakazaki, T. Kawamura, H. Nishimura, K. Mima, Phys. Rev. A 75, 062710 (2007)

    Article  ADS  Google Scholar 

  29. G. Weber et al. Phys. Rev. Lett. 105, 243002 (2010)

    Article  ADS  Google Scholar 

  30. A. Surzhykov, Y. Litvinov, T. Stöhlker, S. Fritzsche, Phys. Rev. A 87, 052507 (2013)

    Article  ADS  Google Scholar 

  31. L. Safari, P. Amaro, S. Fritzsche, J.P. Santos, S. Tashenov, F. Fratini, Phys. Rev. A 86, 043405 (2012)

    Article  ADS  Google Scholar 

  32. L. Safari, P. Amaro, S. Fritzsche, J.P. Santos, F. Fratini, Phys. Rev. A 90, 014502 (2014)

    Article  ADS  Google Scholar 

  33. A. Surzhykov, S. Fritzsche, A. Gumberidze, T. Stöhlker, Phys. Rev. Lett. 88, 153001 (2002)

    Article  ADS  Google Scholar 

  34. S. Fritzsche, A. Surzhykov, T. Stöhlker, Phys. Scr. T144, 014002 (2011)

    Article  ADS  Google Scholar 

  35. A. Surzhykov, L. Sharma, T. Stöhlker, S. Fritzsche, J. Phys.: Conf. Ser. 212, 012032 (2010)

    ADS  Google Scholar 

  36. R. Barday et al., J. Phys.: Conf. Ser. 298, 012022 (2011)

    ADS  Google Scholar 

  37. M.K. Inal, H.L. Zhang, D.H. Sampson, Phys. Rev. A 46, 2449 (1992)

    Article  ADS  Google Scholar 

  38. M.K. Inal, D.H. Sampson, H.L. Zhang, J. Dubau, Phys. Scr 55, 170 (1997)

    Article  ADS  Google Scholar 

  39. M.K. Inal, H.L. Zhang, D.H. Sampson, C.J. Fontes, Phys. Rev. A 65, 032727 (2002)

    Article  ADS  Google Scholar 

  40. F.A. Parpia, C.F. Fischer, I.P. Grant, Comput. Phys. Commun. 94, 249 (1996)

    Article  ADS  Google Scholar 

  41. S. Fritzsche, H. Aksela, C.Z. Dong, S. Heinäsmäki, J.E. Sienkiewicz, Nucl. Instr. Meth. Phys. Res. B 205, 93 (2003)

    Article  ADS  Google Scholar 

  42. Z.B. Chen, C.Z. Dong, J. Jiang, Phys. Rev. A 90, 022715 (2014)

    Article  ADS  Google Scholar 

  43. L. Bettadj, M.K. Inal, M. Benmouna, J. Phys. B 47, 105205 (2014)

    Article  ADS  Google Scholar 

  44. V.G. Palchikov, Phys. Scr. 57, 581 (1998)

    Article  ADS  Google Scholar 

  45. S.N. Nahar, A.K. Pradhan, S. Lim, Can. J. Phys. 89, 483 (2011)

    Article  ADS  Google Scholar 

  46. V.A. Yerokhin, A. Surzhykov, R. Märtin, S. Tashenov, G. Weber, Phys. Rev. A 86, 032708 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-Bin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZB., Zeng, JL. Circular polarization of the Lyman-α 1 line radiation emitted by longitudinally-polarized electron impact excitation: effects of Breit interaction and radiation multipoles. Eur. Phys. J. D 69, 148 (2015). https://doi.org/10.1140/epjd/e2015-60071-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60071-2

Keywords

Navigation