Advertisement

Analysis of the thermonuclear instability including low-power ICRH minority heating in IGNITOR

  • Alessandro Cardinali
  • Giorgio Sonnino
Regular Article

Abstract

The nonlinear thermal balance equation for classical plasma in a toroidal geometry is analytically and numerically investigated including ICRH power. The determination of the equilibrium temperature and the analysis of the stability of the solution are performed by solving the energy balance equation that includes the transport relations obtained by the classical kinetic theory. An estimation of the confinement time is also provided. We show that the ICRH heating in the IGNITOR experiment, among other applications, is expected to be used to trigger the thermonuclear instability. Here a scenario is considered where IGNITOR is led to operate in a slightly sub-critical regime by adding a small fraction of 3He to the nominal 50%-50% deuterium-tritium mixture. The difference between power lost and alpha heating is compensated by additional ICRH heating, which should be able to increase the global plasma temperature via collisions between 3He minority and the background D-T ions.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    B. Coppi, M. Nassi, L.E. Sugiyama, Phys. Scripta 45, 112 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    J.P. Freidberg, Plasma Physics and Fusion Energy (Cambridge University Press, Cambridge, 2007)Google Scholar
  3. 3.
    R.G. Mills, The Problem of Control of Thermonuclear Reactors, Los Alamos report, LA-4250, B1-1-B1-5 (1969)Google Scholar
  4. 4.
    W.M. Stacey, Fus. Sci. Technol. 52, 29 (2007)Google Scholar
  5. 5.
    S.V. Putvinskii, Sov. J. Plasma Phys. 6, 694 (1980)Google Scholar
  6. 6.
    S.G. Bespoludennov, V.I. Pistunovich, A.I. Mel’dianov, S.A. Galkin, in Proceedings of the 4th Technical Committee Meeting and Workshop on Fusion Reactor Design and Technology; Yalta (USSR), 1986; Fusion Reactor Design and Technology 2 (Austria, IAEA-TC-392.3/38, 1987)Google Scholar
  7. 7.
    S. Migliori, A. Frattolillo, S.K. Combs, L.R. Baylor, G. Roveta, F. Bombarda, R. Foust, D.T. Fehling, J.M. McGill, J.B.O. Caughman, J.C. Thomas, in Proceedings of 21st IEEE/NPS Symposium on Fusion Engineering, Sept. 2005, IEEE (2005)Google Scholar
  8. 8.
    J. Mandrekas, W.M. Stacey, Fusion Technol. 19, 57 (1991)Google Scholar
  9. 9.
    L. Hartch, V. Fuchs, A. Bers, Nucl. Fusion 20, 833 (1980)ADSCrossRefGoogle Scholar
  10. 10.
    Ya. I. Kolesnichenko, V.V. Lutsenko, S.N. Reznik, Fusion Technol. 25, 84 (1994)Google Scholar
  11. 11.
    A. Cardinali, B. Coppi, Bull. Am. Phys. Soc. 54, 73 (2009)Google Scholar
  12. 12.
    R. Balescu, Transport Process in plasmas (Elsevier Science Publication, North-Holland, 1988), Vols. I and IIGoogle Scholar
  13. 13.
    Xing Z. Li, Qing M. Wei, Bin Liu, Nucl. Fusion 48, 125003 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    A. Cardinali, ENEA Technical Report RT/2009/37/FUS, Frascati, Italy (2009)Google Scholar
  15. 15.
    M. Brambilla, Plasma Phys. Control. Nucl. Fusion 41, 1 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    M. Brambilla, Nucl. Fusion 34, 1121 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    M. Brambilla, R. Bilato, Nucl. Fusion 49, 085004 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    G. Sonnino, P. Peeters, Phys. Plasmas 15, 062309 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    G. Sonnino, Phys. Rev. E 79, 051126 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    G. Sonnino, A. Sonnino, J. Thermodyn. Catalysis 5, 129 (2014)Google Scholar
  21. 21.
    B. Coppi, Bull. Am. Phys. Soc. 59, (2014)Google Scholar
  22. 22.
    B. Coppi, Comm. Plasma Phys. Control. Fusion 3, 2 (1977)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.ENEA Centro Ricerche FrascatiFrascatiItaly
  2. 2.Department of Theoretical Physics and MathematicsUniversité Libre de Bruxelles (ULB), Campus PlainBrusselsBelgium
  3. 3.Royal Military School (RMS)BrusselsBelgium

Personalised recommendations