Skip to main content
Log in

The density matrix renormalization group for ab initio quantum chemistry

  • Topical Review
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS, the rank of the decomposition, controls the size of the corner of the many-body Hilbert space that can be reached with the ansatz. This parameter can be systematically increased until numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation functions. Therefore DMRG works extremely well for noncritical one-dimensional systems. The active orbital spaces in quantum chemistry are however often far from one-dimensional, and relatively large virtual dimensions are required to use DMRG for ab initio quantum chemistry (QC-DMRG). The QC-DMRG algorithm, its computational cost, and its properties are discussed. Two important aspects to reduce the computational cost are given special attention: the orbital choice and ordering, and the exploitation of the symmetry group of the Hamiltonian. With these considerations, the QC-DMRG algorithm allows to find numerically exact solutions in active spaces of up to 40 electrons in 40 orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Hartree, Math. Proc. Cambridge Philos. Soc. 24, 89 (1928)

    MATH  ADS  Google Scholar 

  2. J.C. Slater, Phys. Rev. 32, 339 (1928)

    MATH  ADS  Google Scholar 

  3. V. Fock, Z. Phys. 61, 126 (1926)

    ADS  Google Scholar 

  4. T. Helgaker, P. Jørgensen, J. Olsen, Molecular electronic-structure theory, 1st edn. (Wiley, New-York, 2000)

  5. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    MathSciNet  ADS  Google Scholar 

  6. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    MathSciNet  ADS  Google Scholar 

  7. R.M. Dickson, A.D. Becke, J. Chem. Phys. 123, 111101 (2005)

    ADS  Google Scholar 

  8. C. Møller, M.S. Plesset, Phys. Rev. 46, 618 (1934)

    MATH  ADS  Google Scholar 

  9. J.C. Slater, Phys. Rev. 34, 1293 (1929)

    MATH  ADS  Google Scholar 

  10. E.U. Condon, Phys. Rev. 36, 1121 (1930)

    MATH  ADS  Google Scholar 

  11. F. Coester, Nucl. Phys. 7, 421 (1958)

    Google Scholar 

  12. F. Coester, H. Kümmel, Nucl. Phys. 17, 477 (1960)

    MATH  Google Scholar 

  13. J. Čížek, J. Chem. Phys. 45, 4256 (1966)

    Google Scholar 

  14. B.O. Roos, Int. J. Quantum Chem. 18, 175 (1980)

    Google Scholar 

  15. B.O. Roos, P.R. Taylor, P.E.M. Siegbahn, Chem. Phys. 48, 157 (1980)

    MathSciNet  ADS  Google Scholar 

  16. P.E.M. Siegbahn, J. Almlöf, A. Heiberg, B.O. Roos, J. Chem. Phys. 74, 2384 (1981)

    ADS  Google Scholar 

  17. P.-Å. Malmqvist, A. Rendell, B.O. Roos, J. Phys. Chem. 94, 5477 (1990)

    Google Scholar 

  18. K. Andersson, P.-Å. Malmqvist, B.O. Roos, J. Chem. Phys. 96, 1218 (1992)

    ADS  Google Scholar 

  19. R.J. Buenker, S.D. Peyerimhoff, Theor. Chim. Acta 35, 33 (1974)

    Google Scholar 

  20. H.-J. Werner, E.-A. Reinsch, J. Chem. Phys. 76, 3144 (1982)

    ADS  Google Scholar 

  21. P.E.M. Siegbahn, J. Chem. Phys. 70, 5391 (1979)

    ADS  Google Scholar 

  22. P.E.M. Siegbahn, J. Chem. Phys. 72, 1647 (1980)

    MathSciNet  ADS  Google Scholar 

  23. B.R. Brooks, H.F. Schaefer, J. Chem. Phys. 70, 5092 (1979)

    ADS  Google Scholar 

  24. N. Oliphant, L. Adamowicz, J. Chem. Phys. 96, 3739 (1992)

    ADS  Google Scholar 

  25. L.Z. Stolarczyk, Chem. Phys. Lett. 217, 1 (1994)

    ADS  Google Scholar 

  26. T. Yanai, G.K.-L. Chan, J. Chem. Phys. 124, 194106 (2006)

    ADS  Google Scholar 

  27. S.R. White, R.L. Martin, J. Chem. Phys. 110, 4127 (1999)

    ADS  Google Scholar 

  28. J.F. Cornwell, in Group theory in physics, 1st edn. (Academic Press Inc., Ltd., London, 1984), Vols. 1 and 2

  29. S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

    ADS  Google Scholar 

  30. S.R. White, Phys. Rev. B 48, 10345 (1993)

    ADS  Google Scholar 

  31. S. Östlund, S. Rommer, Phys. Rev. Lett. 75, 3537 (1995)

    ADS  Google Scholar 

  32. S. Rommer, S. Östlund, Phys. Rev. B 55, 2164 (1997)

    ADS  Google Scholar 

  33. M.B. Hastings, J. Stat. Mech.: Theor. Exp. 2007, P08024 (2007)

    MathSciNet  Google Scholar 

  34. T. Nishino, Origin of Matrix Product State in Statistical Mechanics, in International Workshop on Density Matrix Renormalization Group and Other Advances in Numerical Renormalization Group Methods, August 23 - September 3, 2010

  35. H.A. Kramers, G.H. Wannier, Phys. Rev. 60, 263 (1941)

    MathSciNet  MATH  ADS  Google Scholar 

  36. R.J. Baxter, J. Math. Phys. 9, 650 (1968)

    ADS  Google Scholar 

  37. M.P. Nightingale, H.W.J. Blöte, Phys. Rev. B 33, 659 (1986)

    ADS  Google Scholar 

  38. I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Phys. Rev. Lett. 59, 799 (1987)

    ADS  Google Scholar 

  39. M. Fannes, B. Nachtergaele, R.F. Werner, Europhys. Lett. 10, 633 (1989)

    ADS  Google Scholar 

  40. M. Fannes, B. Nachtergaele, R.F. Werner, Commun. Math. Phys. 144, 443 (1992)

    MathSciNet  MATH  ADS  Google Scholar 

  41. I. Oseledets, SIAM J. Sci. Comput. 33, 2295 (2011)

    MathSciNet  MATH  Google Scholar 

  42. D.V. Savostyanov, S.V. Dolgov, J.M. Werner, I. Kuprov, Phys. Rev. B 90, 085139 (2014)

    Google Scholar 

  43. S. Tomonaga, Prog. Theor. Phys. 1, 27 (1946)

    MathSciNet  MATH  ADS  Google Scholar 

  44. J. Schwinger, Phys. Rev. 73, 416 (1948)

    MathSciNet  MATH  ADS  Google Scholar 

  45. J. Schwinger, Phys. Rev. 74, 1439 (1948)

    MathSciNet  MATH  ADS  Google Scholar 

  46. R.P. Feynman, Phys. Rev. 76, 769 (1949)

    MathSciNet  MATH  ADS  Google Scholar 

  47. R.P. Feynman, Phys. Rev. 76, 749 (1949)

    MathSciNet  MATH  ADS  Google Scholar 

  48. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    ADS  Google Scholar 

  49. S.R. White, R.M. Noack, Phys. Rev. Lett. 68, 3487 (1992)

    ADS  Google Scholar 

  50. J. von Neumann, Mathematisch-Physikalische Klasse 1927, 273 (1927)

    Google Scholar 

  51. M.B. Plenio, J. Eisert, J. Dreißig, M. Cramer, Phys. Rev. Lett. 94, 060503 (2005)

    MathSciNet  ADS  Google Scholar 

  52. J. Eisert, M. Cramer, M.B. Plenio, Rev. Mod. Phys. 82, 277 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  53. K. Van Acoleyen, M. Mariën, F. Verstraete, Phys. Rev. Lett. 111, 170501 (2013)

    Google Scholar 

  54. G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003)

    ADS  Google Scholar 

  55. G. Evenbly, G. Vidal, J. Stat. Phys. 145, 891 (2011)

    MathSciNet  MATH  ADS  Google Scholar 

  56. E.M. Stoudenmire, S.R. White, Ann. Rev. Condens. Matter Phys. 3, 111 (2012)

    Google Scholar 

  57. F. Verstraete, J.I. Cirac, Phys. Rev. Lett. 104, 190405 (2010)

    MathSciNet  ADS  Google Scholar 

  58. F. Verstraete, J.I. Cirac, arXiv:cond-mat/0407066 (2004)

  59. G. Vidal, Phys. Rev. Lett. 99, 220405 (2007)

    ADS  Google Scholar 

  60. F. Verstraete, D. Porras, J.I. Cirac, Phys. Rev. Lett. 93, 227205 (2004)

    ADS  Google Scholar 

  61. Y.-Y. Shi, L.-M. Duan, G. Vidal, Phys. Rev. A 74, 022320 (2006)

    ADS  Google Scholar 

  62. A.J. Ferris, Phys. Rev. B 87, 125139 (2013)

    ADS  Google Scholar 

  63. V. Murg, F. Verstraete, Ö. Legeza, R.M. Noack, Phys. Rev. B 82, 205105 (2010)

    ADS  Google Scholar 

  64. V. Murg, F. Verstraete, R. Schneider, P.R. Nagy, Ö. Legeza, arXiv:1403.0981 (2014)

  65. T. Xiang, Phys. Rev. B 53, R10445 (1996)

    ADS  Google Scholar 

  66. S. Daul, I. Ciofini, C. Daul, S.R. White, Int. J. Quantum Chem. 79, 331 (2000)

    Google Scholar 

  67. A.O. Mitrushchenkov, G. Fano, F. Ortolani, R. Linguerri, P. Palmieri, J. Chem. Phys. 115, 6815 (2001)

    ADS  Google Scholar 

  68. G.K.-L. Chan, M. Head-Gordon, J. Chem. Phys. 116, 4462 (2002)

    ADS  Google Scholar 

  69. Ö. Legeza, J. Röder, B.A. Hess, Phys. Rev. B 67, 125114 (2003)

    ADS  Google Scholar 

  70. G.K.-L. Chan, M. Head-Gordon, J. Chem. Phys. 118, 8551 (2003)

    ADS  Google Scholar 

  71. Ö. Legeza, J. Röder, B.A. Hess, Mol. Phys. 101, 2019 (2003)

    ADS  Google Scholar 

  72. A.O. Mitrushchenkov, R. Linguerri, P. Palmieri, G. Fano, J. Chem. Phys. 119, 4148 (2003)

    ADS  Google Scholar 

  73. Ö. Legeza, J. Sólyom, Phys. Rev. B 68, 195116 (2003)

    ADS  Google Scholar 

  74. G.K.-L. Chan, J. Chem. Phys. 120, 3172 (2004)

    ADS  Google Scholar 

  75. G.K.-L. Chan, M. Kállay, J. Gauss, J. Chem. Phys. 121, 6110 (2004)

    ADS  Google Scholar 

  76. Ö. Legeza, J. Sólyom, Phys. Rev. B 70, 205118 (2004)

    ADS  Google Scholar 

  77. G. Moritz, B.A. Hess, M. Reiher, J. Chem. Phys. 122, 024107 (2005)

    ADS  Google Scholar 

  78. G.K.-L. Chan, T. Van Voorhis, J. Chem. Phys. 122, 204101 (2005)

    ADS  Google Scholar 

  79. G. Moritz, A. Wolf, M. Reiher, J. Chem. Phys. 123, 184105 (2005)

    ADS  Google Scholar 

  80. G. Moritz, M. Reiher, J. Chem. Phys. 124, 034103 (2006)

    ADS  Google Scholar 

  81. J. Hachmann, W. Cardoen, G.K.-L. Chan, J. Chem. Phys. 125, 144101 (2006)

    ADS  Google Scholar 

  82. J. Rissler, R.M. Noack, S.R. White, Chem. Phys. 323, 519 (2006)

    ADS  Google Scholar 

  83. G. Moritz, M. Reiher, J. Chem. Phys. 126, 244109 (2007)

    ADS  Google Scholar 

  84. J.J. Dorando, J. Hachmann, G.K.-L. Chan, J. Chem. Phys. 127, 084109 (2007)

    ADS  Google Scholar 

  85. J. Hachmann, J.J. Dorando, M. Avilés, G.K.-L. Chan, J. Chem. Phys. 127, 134309 (2007)

    ADS  Google Scholar 

  86. K.H. Marti, I.M. Ondík, G. Moritz, M. Reiher, J. Chem. Phys. 128, 014104 (2008)

    ADS  Google Scholar 

  87. D. Zgid, M. Nooijen, J. Chem. Phys. 128, 014107 (2008)

    ADS  Google Scholar 

  88. D. Zgid, M. Nooijen, J. Chem. Phys. 128, 144115 (2008)

    ADS  Google Scholar 

  89. D. Zgid, M. Nooijen, J. Chem. Phys. 128, 144116 (2008)

    ADS  Google Scholar 

  90. D. Ghosh, J. Hachmann, T. Yanai, G.K.-L. Chan, J. Chem. Phys. 128, 144117 (2008)

    ADS  Google Scholar 

  91. G.K.-L. Chan, Phys. Chem. Chem. Phys. 10, 3454 (2008)

    Google Scholar 

  92. T. Yanai, Y. Kurashige, D. Ghosh, G.K.-L. Chan, Int. J. Quantum Chem. 109, 2178 (2009)

    ADS  Google Scholar 

  93. J.J. Dorando, J. Hachmann, G.K.-L. Chan, J. Chem. Phys. 130, 184111 (2009)

    ADS  Google Scholar 

  94. Y. Kurashige, T. Yanai, J. Chem. Phys. 130, 234114 (2009)

    ADS  Google Scholar 

  95. T. Yanai, Y. Kurashige, E. Neuscamman, G.K.-L. Chan, J. Chem. Phys. 132, 024105 (2010)

    ADS  Google Scholar 

  96. E. Neuscamman, T. Yanai, G.K.-L. Chan, J. Chem. Phys. 132, 024106 (2010)

    ADS  Google Scholar 

  97. K.H. Marti, M. Reiher, Mol. Phys. 108, 501 (2010)

    ADS  Google Scholar 

  98. H.-G. Luo, M.-P. Qin, T. Xiang, Phys. Rev. B 81, 235129 (2010)

    ADS  Google Scholar 

  99. W. Mizukami, Y. Kurashige, T. Yanai, J. Chem. Phys. 133, 091101 (2010)

    ADS  Google Scholar 

  100. K.H. Marti, B. Bauer, M. Reiher, M. Troyer, F. Verstraete, New J. Phys. 12, 103008 (2010)

    ADS  Google Scholar 

  101. K.H. Marti, M. Reiher, Phys. Chem. Chem. Phys. 13, 6750 (2011)

    Google Scholar 

  102. G. Barcza, Ö. Legeza, K.H. Marti, M. Reiher, Phys. Rev. A 83, 012508 (2011)

    ADS  Google Scholar 

  103. K. Boguslawski, K.H. Marti, M. Reiher, J. Chem. Phys. 134, 224101 (2011)

    ADS  Google Scholar 

  104. Y. Kurashige and T. Yanai, J. Chem. Phys. 135, 094104 (2011)

    ADS  Google Scholar 

  105. A.O. Mitrushchenkov, G. Fano, R. Linguerri, P. Palmieri, Int. J. Quantum Chem. 112, 1606 (2012)

    Google Scholar 

  106. S. Sharma, G.K.-L. Chan, J. Chem. Phys. 136, 124121 (2012)

    ADS  Google Scholar 

  107. S. Wouters, P.A. Limacher, D. Van Neck, P.W. Ayers, J. Chem. Phys. 136, 134110 (2012)

    ADS  Google Scholar 

  108. K. Boguslawski, K.H. Marti, Ö. Legeza, M. Reiher, J. Chem. Theor. Comput. 8, 1970 (2012)

    Google Scholar 

  109. T. Yanai, Y. Kurashige, E. Neuscamman, G.K.-L. Chan, Phys. Chem. Chem. Phys. 14, 7809 (2012)

    Google Scholar 

  110. K. Boguslawski, P. Tecmer, Ö. Legeza, M. Reiher, J. Phys. Chem. Lett. 3, 3129 (2012)

    Google Scholar 

  111. W. Mizukami, Y. Kurashige, T. Yanai, J. Chem. Theor. Comput. 9, 401 (2013)

    Google Scholar 

  112. N. Nakatani, G.K.-L. Chan, J. Chem. Phys. 138, 134113 (2013)

    ADS  Google Scholar 

  113. K. Boguslawski, P. Tecmer, G. Barcza, Ö. Legeza, M. Reiher, J. Chem. Theor. Comput. 9, 2959 (2013)

    Google Scholar 

  114. Y. Kurashige, G.K.-L. Chan, T. Yanai, Nat. Chem. 5, 660 (2013)

    Google Scholar 

  115. Y. Ma, H. Ma, J. Chem. Phys. 138, 224105 (2013)

    ADS  Google Scholar 

  116. M. Saitow, Y. Kurashige, T. Yanai, J. Chem. Phys. 139, 044118 (2013)

    ADS  Google Scholar 

  117. F. Liu, Y. Kurashige, T. Yanai, K. Morokuma, J. Chem. Theor. Comput. 9, 4462 (2013)

    Google Scholar 

  118. P. Tecmer, K. Boguslawski, Ö. Legeza, M. Reiher, Phys. Chem. Chem. Phys. 16, 719 (2014)

    Google Scholar 

  119. N. Nakatani, S. Wouters, D. Van Neck, G.K.-L. Chan, J. Chem. Phys. 140, 024108 (2014)

    ADS  Google Scholar 

  120. S. Knecht, Ö. Legeza, M. Reiher, J. Chem. Phys. 140, 041101 (2014)

    ADS  Google Scholar 

  121. S. Wouters, W. Poelmans, P.W. Ayers, D. Van Neck, Comput. Phys. Commun. 185, 1501 (2014)

    MathSciNet  ADS  Google Scholar 

  122. T.V. Harris, Y. Kurashige, T. Yanai, K. Morokuma, J. Chem. Phys. 140, 054303 (2014)

    ADS  Google Scholar 

  123. M. Mottet, P. Tecmer, K. Boguslawski, Ö. Legeza, M. Reiher, Phys. Chem. Chem. Phys. 16, 8872 (2014)

    Google Scholar 

  124. T.N. Lan, Y. Kurashige, T. Yanai, J. Chem. Theor. Comput. 10, 1953 (2014)

    Google Scholar 

  125. S. Sharma, T. Yanai, G.H. Booth, C.J. Umrigar, G.K.-L. Chan, J. Chem. Phys. 140, 104112 (2014)

    ADS  Google Scholar 

  126. Y. Kurashige, M. Saitow, J. Chalupsky, T. Yanai, Phys. Chem. Chem. Phys. 16, 11988 (2014)

    Google Scholar 

  127. S. Wouters, T. Bogaerts, P. Van Der Voort, V. Van Speybroeck, D. Van Neck, J. Chem. Phys. 140, 241103 (2014)

    ADS  Google Scholar 

  128. E. Fertitta, B. Paulus, G. Barcza, Ö. Legeza, arXiv:1406.7038 (2014)

  129. G.K.-L. Chan, J.J. Dorando, D. Ghosh, J. Hachmann, E. Neuscamman, H. Wang, T. Yanai, Frontiers in Quantum Systems in Chemistry and Physics, in Progress in Theoretical Chemistry and Physics, edited by S. Wilson, P.J. Grout, J. Maruani, G. Delgado-Barrio, P. Piecuch (Springer, 2008), Vol. 18, pp. 49–65

  130. G.K.-L. Chan, D. Zgid, The Density Matrix Renormalization Group in Quantum Chemistry, in Annual Reports in Computational Chemistry (Elsevier, 2009), Vol. 5, Chap. 7, pp. 149–162

  131. K.H. Marti, M. Reiher, Z. Phys. Chem. 224, 583 (2010)

    Google Scholar 

  132. G.K.-L. Chan, S. Sharma, Ann. Rev. Phys. Chem. 62, 465 (2011)

    ADS  Google Scholar 

  133. G.K.-L. Chan, WIREs Comput. Mol. Sci. 2, 907 (2012)

    Google Scholar 

  134. Y. Kurashige, Mol. Phys. 112, 1485 (2014)

    ADS  Google Scholar 

  135. S.F. Keller, M. Reiher, Chimia 68, 200 (2014)

    Google Scholar 

  136. C. Lanczos, J. Res. Nat. Bureau Stand. 45, 255 (1950)

    MathSciNet  Google Scholar 

  137. E.R. Davidson, J. Comput. Phys. 17, 87 (1975)

    MATH  ADS  Google Scholar 

  138. P. Jordan, E. Wigner, Z. Phys. 47, 631 (1928)

    MATH  ADS  Google Scholar 

  139. S. Wouters, Ph.D. thesis, Ghent University, 2014

  140. C. Edmiston, K. Ruedenberg, Rev. Mod. Phys. 35, 457 (1963)

    MATH  ADS  Google Scholar 

  141. Ö. Legeza, G. Fáth, Phys. Rev. B 53, 14349 (1996)

    ADS  Google Scholar 

  142. G.K.-L. Chan, P.W. Ayers, E.S. Croot III, J. Stat. Phys. 109, 289 (2002)

    MathSciNet  MATH  Google Scholar 

  143. S.R. White, Phys. Rev. B 72, 180403 (2005)

    ADS  Google Scholar 

  144. S.R. White, Phys. Rev. Lett. 77, 3633 (1996)

    ADS  Google Scholar 

  145. B.C. Carlson, J.M. Keller, Phys. Rev. 105, 102 (1957)

    MathSciNet  MATH  ADS  Google Scholar 

  146. J. Pipek, P.G. Mezey, J. Chem. Phys. 90, 4916 (1989)

    ADS  Google Scholar 

  147. A.O. Mitrushchenkov, G. Fano, R. Linguerri, P. Palmieri, arXiv:cond-mat/0306058 (2003)

  148. J. Hubbard, Proc. Roy. Soc. Lond. Ser. A 276, 238 (1963)

    ADS  Google Scholar 

  149. K. Hallberg, Density Matrix Renormalization, in Theoretical Methods for Strongly Correlated Electrons, edited by D. Sénéchal, A.-M. Tremblay, C. Bourbonnais, CRM Series in Mathematical Physics (Springer, New York, 2004), Chap. 1, pp. 3–37

  150. B. Pirvu, J. Haegeman, F. Verstraete, Phys. Rev. B 85, 035130 (2012)

    ADS  Google Scholar 

  151. J. Haegeman, B. Pirvu, D.J. Weir, J.I. Cirac, T.J. Osborne, H. Verschelde, F. Verstraete, Phys. Rev. B 85, 100408 (2012)

    ADS  Google Scholar 

  152. S. Wouters, N. Nakatani, D. Van Neck, G.K.-L. Chan, Phys. Rev. B 88, 075122 (2013)

    ADS  Google Scholar 

  153. J. Haegeman, T.J. Osborne, F. Verstraete, Phys. Rev. B 88, 075133 (2013)

    ADS  Google Scholar 

  154. J. Haegeman, J.I. Cirac, T.J. Osborne, I. Pižorn, H. Verschelde, F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011)

    ADS  Google Scholar 

  155. J.M. Kinder, C.C. Ralph, G.K.-L. Chan, Quantum Information and Computation for Chemistry, in Advances in Chemical Physics, edited by S. Kais (John Wiley & Sons, 2014), Vol. 154, Chap. 7, pp. 179–192

  156. F. Mezzacapo, N. Schuch, M. Boninsegni, J.I. Cirac, New J. Phys. 11, 083026 (2009)

    ADS  Google Scholar 

  157. H. Weyl, Gruppentheorie und Quantenmechanik (Hirzel, Leipzig, 1928)

  158. E. Wigner, Ann. Math. 40, 149 (1939)

    MathSciNet  Google Scholar 

  159. G. Sierra, T. Nishino, Nucl. Phys. B 495, 505 (1997)

    MathSciNet  MATH  ADS  Google Scholar 

  160. I.P. McCulloch, M. Gulácsi, Austr. J. Phys. 53, 597 (2000)

    MATH  Google Scholar 

  161. I.P. McCulloch, M. Gulácsi, Philos. Mag. Lett. 81, 447 (2001)

    Google Scholar 

  162. I.P. McCulloch, M. Gulácsi, Europhys. Lett. 57, 852 (2002)

    ADS  Google Scholar 

  163. I.P. McCulloch, J. Stat. Mech.: Theory Exp. 2007, P10014 (2007)

    Google Scholar 

  164. S. Singh, H.-Q. Zhou, G. Vidal, New J. Phys. 12, 033029 (2010)

    ADS  Google Scholar 

  165. S. Singh, R.N.C. Pfeifer, G. Vidal, Phys. Rev. A 82, 050301 (2010)

    MathSciNet  ADS  Google Scholar 

  166. S. Singh, G. Vidal, Phys. Rev. B 86, 195114 (2012)

    ADS  Google Scholar 

  167. S. Pittel, N. Sandulescu, Phys. Rev. C 73, 014301 (2006)

    ADS  Google Scholar 

  168. J. Rotureau, N. Michel, W. Nazarewicz, M. Płoszajczak, J. Dukelsky, Phys. Rev. Lett. 97, 110603 (2006)

    ADS  Google Scholar 

  169. B. Thakur, S. Pittel, N. Sandulescu, Phys. Rev. C 78, 041303 (2008)

    ADS  Google Scholar 

  170. A. Weichselbaum, Ann. Phys. 327, 2972 (2012)

    MathSciNet  MATH  ADS  Google Scholar 

  171. Ö. Legeza, J. Sólyom, Phys. Rev. B 56, 14449 (1997)

    ADS  Google Scholar 

  172. W.H. Dickhoff, D. Van Neck, Many-body theory exposed!, 2nd edn. (World Scientific, 2008)

  173. S. Sharma, G.K.-L. Chan, Block code for DMRG (2012), http://www.princeton.edu/chemistry/chan/software/dmrg/

  174. S. Wouters, CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry (2014), https://github.com/SebWouters/CheMPS2

  175. E.M. Stoudenmire, S.R. White, Phys. Rev. B 87, 155137 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Wouters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wouters, S., Van Neck, D. The density matrix renormalization group for ab initio quantum chemistry. Eur. Phys. J. D 68, 272 (2014). https://doi.org/10.1140/epjd/e2014-50500-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50500-1

Keywords

Navigation