Advertisement

Optimal initiation of electronic excited state mediated intramolecular H-transfer in malonaldehyde by UV-laser pulses

  • K. R. Nandipati
  • H. Singh
  • S. Nagaprasad Reddy
  • K. A. Kumar
  • S. MahapatraEmail author
Regular Article

Abstract

Optimally controlled initiation of intramolecular H-transfer in malonaldehyde is accomplished by designing a sequence of ultrashort (~80 fs) down-chirped pump-dump ultra violet (UV)-laser pulses through an optically bright electronic excited [S 2 (π π )] state as a mediator. The sequence of such laser pulses is theoretically synthesized within the framework of optimal control theory (OCT) and employing the well-known pump-dump scheme of Tannor and Rice [D.J. Tannor, S.A. Rice, J. Chem. Phys. 83, 5013 (1985)]. In the OCT, the control task is framed as the maximization of cost functional defined in terms of an objective function along with the constraints on the field intensity and system dynamics. The latter is monitored by solving the time-dependent Schrödinger equation. The initial guess, laser driven dynamics and the optimized pulse structure (i.e., the spectral content and temporal profile) followed by associated mechanism involved in fulfilling the control task are examined in detail and discussed. A comparative account of the dynamical outcomes within the Condon approximation for the transition dipole moment versus its more realistic value calculated ab initio is also presented.

Keywords

Ultraintense and Ultra-short Laser Fields 

Supplementary material

References

  1. 1.
    Theoretical treatments of hydrogen bonding, edited by D. Hadži (John Wiley and Sons, Chichester, 1997)Google Scholar
  2. 2.
    Hydrogen transfer reactions, edited by J.T. Hynes, J.P. Klinmen, R.L. Schowen (Wiley-VCH, Weinheim, 2006)Google Scholar
  3. 3.
    N. Došlić, Y. Fujimura, L. González, K. Hoki, D. Kröner, O. Kühn, J. Manz, Y. Ohtsuki, in Femtochemistry, edited by F.C. De Feyter, G. Schweitzer (VCH-Wiley, Berlin, 2001), p. 189Google Scholar
  4. 4.
    O. Kühn, L. González, in Hydrogen transfer reactions, edited by J.T. Hynes, J.P. Klinmen, R.L. Schowen (Wiley-VCH, Weinheim, 2006), p. 71Google Scholar
  5. 5.
    N. Došlić, O. Kühn, J. Manz, Ber. Bunsenges. Phys. Chem. 102, 292 (1998) CrossRefGoogle Scholar
  6. 6.
    N. Došlić, O. Kühn, J. Manz, K. Sundermann, J. Phys. Chem. A 102, 9645 (1998) CrossRefGoogle Scholar
  7. 7.
    B. Saritha, M. Durgaprasad, J. Phys. Chem. A 115, 2802 (2001) CrossRefGoogle Scholar
  8. 8.
    R.J. Levis, G.M. Menkir, H. Rabitz, Science 292, 709 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    R.J. Gordon, S.A. Rice, Annu. Rev. Phys. Chem. 48, 601 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    P. Brummer, M. Shapiro, Chem. Phys. Lett. 126, 54 (1986)CrossRefGoogle Scholar
  11. 11.
    M. Shapiro, P. Brummer, J. Chem. Phys. 84, 4103 (1986) ADSCrossRefGoogle Scholar
  12. 12.
    S. Shi, A. Woody, H. Rabitz, J. Chem. Phys. 88, 6780 (1988) Google Scholar
  13. 13.
    S. Shi, H. Rabitz, J. Chem. Phys. 92, 364 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    T. Baumert, G. Gerber, Isr. J. Chem. 34, 103 (1994)CrossRefGoogle Scholar
  15. 15.
    L.C. Zhu, V. Kleiman, X.N. Li, S.-P. Lu, K. Trentelman, R.J. Gordon, Science 270, 77 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    D.J. Tannor, S.A. Rice, J. Chem. Phys. 83, 5013 (1985) ADSCrossRefGoogle Scholar
  17. 17.
    D.J. Tannor, R. Kosloff, S.A. Rice, J. Chem. Phys. 85, 5805 (1986) ADSCrossRefGoogle Scholar
  18. 18.
    R. Kosloff et al., Chem. Phys. 139, 201 (1989) ADSCrossRefGoogle Scholar
  19. 19.
    K. Nishikawa et al., J. Mol. Struct. 615, 13 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    N. Došlić, O. Kühn, J. Manz, K. Sundermann, J. Phys. Chem. A 102, 9645 (1998) CrossRefGoogle Scholar
  21. 21.
    M.V. Korolkov, J. Manz, G.K. Poromonov, J. Chem. Phys. 105, 24 (1996)Google Scholar
  22. 22.
    J. Manz, K. Sundermann, R. de Vivie-Riedle, Chem. Phys. Lett. 290, 415 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    T. Bredtmann, J. Manz, J. Chem. Sci. 124, 121 (2012) CrossRefGoogle Scholar
  24. 24.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in FORTRAN (Cambridge University Press, London, 2000)Google Scholar
  25. 25.
    Digital Signal Processing, edited by L.R. Rabiner, C.M. Rader (IEEE Press, New York, 1972)Google Scholar
  26. 26.
    J.L. Herek, S. Pedersen, L. Banares, A.H. Zewail, J. Chem. Phys. 97, 9046 (1992) ADSCrossRefGoogle Scholar
  27. 27.
    C.J. Seliskar, R.E. Hoffmann, Chem. Phys. Lett. 43, 481 (1976)ADSCrossRefGoogle Scholar
  28. 28.
    H.-J. Werner et al., MOLPRO, version 2002, a package of ab initio programs Google Scholar
  29. 29.
    K. Sunderman, R. de Vivie-Riedle, J. Chem. Phys. 110, 1896 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    S.P. Shah, S.A. Rice, J. Chem. Phys. 113, 6536 (2000) ADSCrossRefGoogle Scholar
  31. 31.
    S.A. Rice, M. Zhao, Optical control of Molecular Dynamics (Wiley Interscience, New York, 2000)Google Scholar
  32. 32.
    M.D. Feit, J.A. Fleck Jr., J. Chem. Phys. 78, 301 (1983)ADSCrossRefGoogle Scholar
  33. 33.
    M.D. Feit, J.A. Fleck Jr., J. Chem. Phys. 80, 2578 (1984)ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    E. Polak, in Computational Methods in Optimization, Mathematics in Science and engineering (Academic Press, New York, 1971), Vol. 77Google Scholar
  35. 35.
    E.G. Birgin, J.M. Martinez, M. Raydan, SIAM J. Optim. 10, 1196 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    P. Gross, D. Neuhauser, H. Rabitz, J. Chem. Phys. 96, 2834 (1992) ADSCrossRefGoogle Scholar
  37. 37.
    M. Holhaus, B. Just, Phys. Rev. A 49, 1950 (1994) ADSCrossRefGoogle Scholar
  38. 38.
    T. Cheng, A. Brown, J. Chem. Phys. 124, 034111 (2006) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • K. R. Nandipati
    • 1
  • H. Singh
    • 2
  • S. Nagaprasad Reddy
    • 1
  • K. A. Kumar
    • 1
  • S. Mahapatra
    • 1
    Email author
  1. 1.School of Chemistry, University of HyderabadHyderabadIndia
  2. 2.Center for Computational Natural Sciences and Bioinformatics, IIIT HyderabadHyderabadIndia

Personalised recommendations