Advertisement

Semi-classical calculations of ultracold and cold collisions with frequency-chirped light

  • Matthew J. Wight
Regular Article

Abstract

We conduct semi-classical Monte-Carlo simulations of ultracold collisions utilizing frequency-chirped laser light on a nanosecond timescale. Recent experiments demonstrated partial control of light-assisted collisional mechanisms with relatively slow chirp rates (10 GHz/μs). Collisions induced with positive chirped light enhance the inelastic collisional loss rate of atoms from a magneto-optical trap due to rapid adiabatic passage, whereas trap loss collisions can be coherently blocked when negative chirped light is used. Early quantum and classical simulations show that for negative chirps, the laser’s frequency continually interacts with the atom pair during the collision. We investigate how this process depends on the chirp rate and show that by moderately speeding up the chirp (>50 GHz/μs), we can significantly enhance coherent processes. We extend our semi-classical model to examine using pulse shaping as a means to coherently control collisions and show that features in the pulse shape should be on the order of or less than 1 ns. We also show that coherent control of collisions using this technique can be extended to temperatures exceeding 1 K.

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    S.A. Rice, M. Zhao, Optimal Control of Molecular Dynamics (Wiley, New York, 2000)Google Scholar
  2. 2.
    M. Shapiro, P. Brumer, Principles of Quantum Control of Molecular Processes (Wiley, New York, 2003)Google Scholar
  3. 3.
    C.P. Koch, M. Shapiro, Chem. Rev. 112, 4928 (2012) CrossRefGoogle Scholar
  4. 4.
    J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, M. Weidemller, Chem. Rev. 112, 4890 (2012) CrossRefGoogle Scholar
  5. 5.
    J.L. Carini, J.A. Pechkis, C.E. Rogers, P.L. Gould, S. Kallush, R. Kosloff, Phys. Rev. A 87, 011401 (2013) ADSCrossRefGoogle Scholar
  6. 6.
    W. Salzmann et al., Phys. Rev. A 73, 023414 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    B.L. Brown, A.J. Dicks, I.A. Walmsley, Phys. Rev. Lett. 96, 173002 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    D.J. McCabe, D.G. England, H.E.L. Martay, M.E. Friedman, J. Petrovic, E. Dimova, B. Chatel, I.A. Walmsley, Phys. Rev. A 80, 033404 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    W. Salzmann et al., Phys. Rev. Lett. 100, 233003 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    U. Marvet, M. Dantus, Chem. Phys. Lett. 245, 393 (1995) ADSCrossRefGoogle Scholar
  11. 11.
    L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C.P. Koch, Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    L. Rybak, Z. Amitay, S. Amaran, R. Kosloff, M. Tomza, R. Moszynski, C.P. Koch, Faraday Disc. 153, 383 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    M.J. Wright, S.D. Gensemer, J. Vala, R. Kosloff, P.L. Gould, Phys. Rev. Lett. 95, 063001 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    M.J. Wright, J.A. Pechkis, J.L. Carini, P.L. Gould, Phys. Rev. A 74, 063402 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    M.J. Wright, J.A. Pechkis, J.L. Carini, S. Kallush, R. Kosloff, P.L. Gould, Phys. Rev. A 75, 051401 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    J.A. Pechkis, J.L. Carini, C.E. Rogers, P.L. Gould, S. Kallush, R. Kosloff, Phys. Rev. A 83, 063403 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    K.A. Suominen, J. Phys. B 29, 5981 (1996) ADSCrossRefGoogle Scholar
  18. 18.
    S.D. Gensemer, P.L. Gould, Phys. Rev. Lett. 80, 936 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    C. Orzel, S.D. Bergeson, S. Kulin, S.L. Rolston, Phys. Rev. Lett. 80, 5093 (1998) ADSCrossRefGoogle Scholar
  20. 20.
    J. Vala, O. Dulieu, F. Masnou-Seeuws, P. Pillet, R. Kosloff, Phys. Rev. A 63, 013412 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    J.L. Carini, J.A. Pechkis, C.E. Rogers, P.L. Gould, S. Kallush, R. Kosloff, Phys. Rev. A 85, 013424 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    E. Luc-Koenig, R. Kosloff, F. Masnou-Seeuws, M. Vatasescu, Phys. Rev. A 70, 033414 (2004) ADSCrossRefGoogle Scholar
  23. 23.
    C.P. Koch, R. Kosloff, F. Masnou-Seeuws, Phys. Rev. A 73, 043409 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    E. Luc-Koenig, F. Masnou-Seeuws, R. Kosloff, Phys. Rev. A 76, 053415 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    S. Kallush, R. Kosloff, Phys. Rev. A 77, 023421 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    C.P. Koch, Phys. Rev. A 78, 063411 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    Y. Huang, W. Zhang, G.R. Wang, T. Xie, S.L. Cong, Phys. Rev. A 86, 043420 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    C.E. Rogers, M.J. Wright, J.L. Carini, J.A. Pechkis, P.L. Gould, J. Opt. Soc. Am. B 24, 1249 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    J. Bakos, G. Djotyan, P. Ignácz, M.Á. Kedves, B. Ráczkevi, Z. Sörlei, J. Szigeti, Opt. Lasers Eng. 47, 19 (2009)CrossRefGoogle Scholar
  30. 30.
    C.E. Rogers, J.L. Carini, J.A. Pechkis, P.L. Gould, Opt. Express 18, 1166 (2010) CrossRefGoogle Scholar
  31. 31.
    C.E. Rogers, J.L. Carini, J.A. Pechkis, P.L. Gould, Rev. Sci. Instrum. 82, 073107 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Physics DepartmentAdelphi UniversityGarden CityUSA

Personalised recommendations