Accurate treatment of total photoabsorption cross sections by an ab initio time-dependent method

  • Mohammad Noh DaudEmail author
Regular Article


A detailed discussion of parallel and perpendicular transitions required for the photoabsorption of a molecule is presented within a time-dependent view. Total photoabsorption cross sections for the first two ultraviolet absorption bands of the N2O molecule corresponding to transitions from the X1 A′ state to the 21 A′ and 11 A′′ states are calculated to test the reliability of the method. By fully considering the property of the electric field polarization vector of the incident light, the method treats the coupling of angular momentum and the parity differently for two kinds of transitions depending on the direction of the vector whether it is: (a) situated parallel in a molecular plane for an electronic transition between states with the same symmetry; (b) situated perpendicular to a molecular plane for an electronic transition between states with different symmetry. Through this, for those transitions, we are able to offer an insightful picture of the dynamics involved and to characterize some new aspects in the photoabsorption process of N2O. Our calculations predicted that the parallel transition to the 21 A′ state is the major dissociation pathway which is in qualitative agreement with the experimental observations. Most importantly, a significant improvement in the absolute value of the total cross section over previous theoretical results [R. Schinke, J. Chem. Phys. 134, 064313 (2011), M.N. Daud, G.G. Balint-Kurti, A. Brown, J. Chem. Phys. 122, 054305 (2005), S. Nanbu, M.S. Johnson, J. Phys. Chem. A 108, 8905 (2004)] was obtained.


Molecular Physics and Chemical Physics 


  1. 1.
    E.J. Heller, J. Chem. Phys. 68, 2066 (1978) CrossRefADSGoogle Scholar
  2. 2.
    R. Kosloff, J. Phys. Chem. 92, 2087 (1988) CrossRefGoogle Scholar
  3. 3.
    Z. Bacic, J.C. Light, Ann. Rev. Phys. Chem. 40, 469 (1989)CrossRefADSGoogle Scholar
  4. 4.
    C. Light, I.P. Hamilton, V.J. Lill, J. Chem. Phys. 82, 1400 (1985) CrossRefADSGoogle Scholar
  5. 5.
    D. Neuhauser, M. Baer, R.S. Judson, D.J. Kouri, J. Chem. Phys. 93, 312 (1990)CrossRefADSGoogle Scholar
  6. 6.
    R.S. Judson, D.J. Kouri, D. Neuhauser, M. Baer, Phys. Rev. A 42, 351 (1990)CrossRefADSGoogle Scholar
  7. 7.
    D.H. Zhang, J.Z.H. Zhang, J. Chem. Phys. 101, 1146 (1994) CrossRefADSGoogle Scholar
  8. 8.
    R.C. Mowrey, D.J. Kouri, J. Chem. Phys. 84, 6466 (1986) CrossRefADSGoogle Scholar
  9. 9.
    M.N. Daud, G.G. Balint-Kurti, Chin. Phys. Lett. 26, 073302 (2009) CrossRefGoogle Scholar
  10. 10.
    T.F. Hanisco, A.C. Kummel, J. Phys. Chem. 97, 7242 (1993) CrossRefGoogle Scholar
  11. 11.
    D.W. Neyer, A.J.R. Heck, D.W. Chandler, J. Chem. Phys. 110, 3411 (1999) CrossRefADSGoogle Scholar
  12. 12.
    D.W. Neyer, A.J.R. Heck, D.W. Chandler, J.M. Teule, M.H.M. Janssen, J. Phys. Chem. A 103, 10388 (1999) CrossRefGoogle Scholar
  13. 13.
    T. Suzuki, H. Katayanagi, K. Mo Y. Tonokura, Chem. Phys. Lett. 256, 90 (1996)CrossRefADSGoogle Scholar
  14. 14.
    P. Felder, B.M. Haas, J.R. Huber, Chem. Phys. Lett. 186, 177 (1991) CrossRefADSGoogle Scholar
  15. 15.
    N. Shafer, K. Tonokura, Y. Matsumi, S. Tasaki, J. Chem. Phys. 95, 6218 (1991) CrossRefADSGoogle Scholar
  16. 16.
    L.L. Springsteen, S. Satyapal, Y. Matsumi, L.M. Dobeck, J. Phys. Chem. 97, 7239 (1993) CrossRefGoogle Scholar
  17. 17.
    J.M. Teule, G.C. Groenenboom, D.W. Neyer, D.W. Chandler, M.H.M. Janssen, Chem. Phys. Lett. 320, 177 (2000) CrossRefADSGoogle Scholar
  18. 18.
    M. Ahmed, E.R. Wouters, D.S. Peterka, O.S. Vasyutinskii, Faraday Disc. 113, 425 (1999) CrossRefADSGoogle Scholar
  19. 19.
    T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)CrossRefADSGoogle Scholar
  20. 20.
    R.D. Amos, A. Bernhardsson, A. Berning, P. Celani, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, P.J. Knowles, T. Korona, R. Lindh, A.W. Lloyd, S.J. McNicholas, F.R. Manby, W. Meyer, M.E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, U. Schumann, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, H.-J. Werner, MOLPRO, a package of ab initio programs designed by H.-J. Werner and P.J. Knowles version 2002.1 Google Scholar
  21. 21.
    D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1998)Google Scholar
  22. 22.
    R.N. Zare, Angular Momentum – Understanding Spatial Aspects in Chemistry and Physics (John Wiley and Sons, New York, 1998)Google Scholar
  23. 23.
    J. Tennyson, B.T. Sutcliffe, J. Chem. Phys. 77, 4061 (1982) CrossRefADSGoogle Scholar
  24. 24.
    C. Leforestier, J. Chem. Phys. 94, 6388 (1991) MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    A. Campargue, D. Permogorov, M. Bach, M. Temsamani, J.V. Auwera, M. Fujii, J. Chem. Phys. 103, 5931 (1995) CrossRefADSGoogle Scholar
  26. 26.
    A. Campargue, Chem. Phys. Lett. 259, 563 (1996) CrossRefADSGoogle Scholar
  27. 27.
    R.A. Toth, Appl. Opt. 30, 5289 (1991) CrossRefADSGoogle Scholar
  28. 28.
    H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81, 3967 (1984) CrossRefADSGoogle Scholar
  29. 29.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U.S. Department of Commerce, 1972)Google Scholar
  30. 30.
    R. Schinke, J. Chem. Phys. 134, 064313 (2011) CrossRefADSGoogle Scholar
  31. 31.
    G.S. Selwyn, H.S. Johnston, J. Chem. Phys. 74, 3791 (1981) CrossRefADSGoogle Scholar
  32. 32.
    K. Yoshino, D.E. Freeman, W.H. Parkinson, Planet. Space Sci. 32, 1219 (1984). Spectral data can be downloaded from Harvard-Smithsonian Center for Astrophysics Molecular Data base, URLCrossRefADSGoogle Scholar
  33. 33.
    G. Selwyn, J. Podolske, H.S. Johnston, Geophys. Res. Lett. 4, 427 (1977)CrossRefADSGoogle Scholar
  34. 34.
    M.F. Mérienne, B. Coquart, A. Jenouvrier, Planet. Space Sci. 38, 617 (1990)CrossRefADSGoogle Scholar
  35. 35.
    W.B. De More, S.P. Sander, C.J. Howard, A.R. Ravishankara, D.M. Golden, C.E. Kolb, R.F. Hampson, M.J. Kurylo, M.J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 1997)Google Scholar
  36. 36.
    S. Nanbu, M.S. Johnson, J. Phys. Chem. A 108, 8905 (2004) CrossRefGoogle Scholar
  37. 37.
    M.N. Daud, G.G. Balint-Kurti, A. Brown, J. Chem. Phys. 122, 054305 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations