One hundred years of the Franck-Hertz experiment

  • Robert E. Robson
  • Ronald D. White
  • Malte Hildebrandt
Colloquium

Abstract

The 1914 experiment of James Franck and Gustav Hertz provided a graphic demonstration of quantization properties of atoms, thereby laying the foundations of modern atomic physics. This article revisits the experiment on the occasion of its Centenary, compares traditional and modern interpretations, and focuses in particular on the link between microscopic processes, which are governed by the laws of quantum mechanics, and macroscopic phenomena as measured in the laboratory. A goal is to place the physics underlying the operation of the Franck-Hertz experiment within the context of contemporary gaseous electronics, and to that end we reach back even further in time to the 1872 kinetic equation of Ludwig Boltzmann. We also show how the experiment can be modelled using fluid equations and Monte Carlo simulation, and go further to show how non-local effects, resonances and striations in plasmas have much in common with the electron physics in the drift region of the Franck-Hertz experiment.

Keywords

Colloquium 

References

  1. 1.
    L.G.H. Huxley, R.W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974)Google Scholar
  2. 2.
    S.C. Brown, in Gaseous Electronics, edited by M.N. Hirsh, H.J. Oskam (Academic Press, New York, 1978), pp. 1–18Google Scholar
  3. 3.
    A. Müller, Nature 157, 119 (1946)CrossRefADSGoogle Scholar
  4. 4.
    J. Franck, G. Hertz, Verh. Deutsche Phys. Ges. 16, 457 (1914)Google Scholar
  5. 5.
    R.E. Robson, M. Hildebrandt, R.D. White, Phys. J. 13, 43 (2014)Google Scholar
  6. 6.
    G. Holst, E. Oosterhuis, Physica 1, 78 (1921)Google Scholar
  7. 7.
    M.J. Druyvesteyn, Z. Phys. 73, 33 (1932)CrossRefADSGoogle Scholar
  8. 8.
    M.J. Druyvesteyn, F.M. Penning, Rev. Mod. Phys. 12, 87 (1940)CrossRefADSGoogle Scholar
  9. 9.
    J.G.A. Hölscher, Physica 35, 129 (1967)CrossRefADSGoogle Scholar
  10. 10.
    M. Hayashi, J. Phys. D 15, 1411 (1982)CrossRefADSGoogle Scholar
  11. 11.
    J. Fletcher, J. Phys. D 18, 221 (1985)CrossRefADSGoogle Scholar
  12. 12.
    J. Fletcher, P.H. Purdie, Aust. J. Phys. 40, 383 (1987)ADSGoogle Scholar
  13. 13.
    R.W. Crompton, Adv. Atom. Mol. Opt. Phys. 33, 97 (1994)CrossRefADSGoogle Scholar
  14. 14.
    B. Schmidt, K. Berkhan, B. Götz, M. Müller, Phys. Scr. T53, 30 (1994)CrossRefADSGoogle Scholar
  15. 15.
    Z.Lj. Petrović, M. Šuvakov, Ž. Nikitović, S. Dujko, O. Šašić, J. Javanović, G. Malović, V. Stojanović, Plasma Sources Sci. Technol. 16, S1 (2007)CrossRefADSGoogle Scholar
  16. 16.
    Z.Lj. Petrović, S. Dujko, D. Marić, G. Malović, Ž. Nikitović, O. Šašić, J. Jovanović, V. Stojanović, M. Radmilović-Radenović, J. Phys. D 42, 194002 (2009)CrossRefADSGoogle Scholar
  17. 17.
    M. Abria, Annal. Chim. Phys. 7, 462 (1843)Google Scholar
  18. 18.
    W.R. Grove, Philos. Trans. R. Soc. London 142, 87 (1852)CrossRefGoogle Scholar
  19. 19.
    G.D. Morgan, Nature 172, 542 (1953)CrossRefADSGoogle Scholar
  20. 20.
    T. Rùšièka, K. Rohlena, Czech. J. Phys. B 22, 906 (1972)CrossRefADSGoogle Scholar
  21. 21.
    K. Rohlena, T. Rùšièka, L. Pekárek, Czech. J. Phys. B 22, 920 (1972)CrossRefADSGoogle Scholar
  22. 22.
    L. Pekárek, Sov. Phys. Uspekhi 11, 188 (1968)CrossRefADSGoogle Scholar
  23. 23.
    V.I. Kolobov, V.A. Godyak, IEEE Trans. Plasma Sci. 23, 503 (1995)CrossRefADSGoogle Scholar
  24. 24.
    Yu.B. Golubovskii, A.Yu. Skoblo, A. Wilke, R.V. Kozakov, J. Behnke, V.O. Nekutchaev, Phys. Rev. E 72, 026414 (2005)CrossRefADSGoogle Scholar
  25. 25.
    V.I. Kolobov, J. Phys. D 39, R487 (2006)CrossRefADSGoogle Scholar
  26. 26.
    C. Gerthsen, H. Kneser, H. Vogel, Physik (Springer-Verlag, Heidelberg, 1982)Google Scholar
  27. 27.
    D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics (John Wiley & Sons, 2000)Google Scholar
  28. 28.
  29. 29.
    J.P. England, M.T. Elford, Aust. J. Phys. 44, 647 (1991)CrossRefADSGoogle Scholar
  30. 30.
    R.E. Robson, B. Li, R.D. White, J. Phys. B 33, 507 (2000)CrossRefADSGoogle Scholar
  31. 31.
    J. Lemmerich, Aufrecht im Sturm der Zeit: Der Physiker James Franck (GNT, Diepholz, 2007)Google Scholar
  32. 32.
    F. von Hippel, Phys. Today 63, 41 (2010)CrossRefGoogle Scholar
  33. 33.
    J. Kuczera, Gustav Hertz (Teubner Verlagsgesellschaft, Leipzig, 1985)Google Scholar
  34. 34.
    James Franck-Gustav Hertz, Die Elektronenstreuversuche, edited by A. Hermann (Ernst Battenberg Verlag, München, 1967)Google Scholar
  35. 35.
    A.C. Melissinos, in Experiments in Modern Physics (McGraw-Hill, New York, 1966), pp. 8–17Google Scholar
  36. 36.
    P. Nicoletopoulos, Eur. J. Phys. 23, 533 (2002)CrossRefGoogle Scholar
  37. 37.
    J. Franck, G. Hertz, in Nobel Lectures, Physics (Elsevier Publishing Company, 1965), pp. 1922–1946Google Scholar
  38. 38.
    M.J. de Vries, 80 Years of Research at the Philips Natuurkundig Laboratorium 1914–1994 (Pallas Publications, Amsterdam, 2005)Google Scholar
  39. 39.
    Ludwig Boltzmann (1844-1909), edited by I.M. Fasol-Boltzmann, G.L. Fasol (Springer, Wien, New York, 2006)Google Scholar
  40. 40.
    L. Boltzmann, Wiener Berichte 66, 275 (1872)MATHGoogle Scholar
  41. 41.
    The Boltzmann equation and applications, edited by E.D.G. Cohen, W. Thiring (Springer-Verlag, Wien, 1973)Google Scholar
  42. 42.
    L.M. Chanin, G.D. Rork, Phys. Rev. 132, 2547 (1963)CrossRefADSGoogle Scholar
  43. 43.
    L.M. Chanin, G.D. Rork, Phys. Rev. A 133, 1005 (1964)CrossRefADSGoogle Scholar
  44. 44.
    Y. Sakai, H. Tagashira, S. Sakamoto, J. Phys. B5, 1010 (1972)Google Scholar
  45. 45.
    H. Sugawara, Y. Sakai, H. Tgashira, J. Phys. D 25, 1483 (1992)CrossRefADSGoogle Scholar
  46. 46.
    D. Loffhagen, F. Sigeneger, Plasma Sources Sci. Technol. 18, 034006 (2009)CrossRefADSGoogle Scholar
  47. 47.
    R. Winkler, F. Sigeneger, D. Uhrland, Pure Appl. Chem. 68, 1065 (1996)CrossRefGoogle Scholar
  48. 48.
    R. Winkler, G. Petrov, F. Sigeneger, D. Uhrlandt, Plasma Sources Sci. Technol. 6, 118 (1997)CrossRefADSGoogle Scholar
  49. 49.
    F. Sigeneger, R. Winkler, Plasma Chem. Plasma Process. 17, 1 (1997)CrossRefGoogle Scholar
  50. 50.
    G. Petrov, R. Winkler, J. Phys. D 30, 53 (1997)CrossRefADSGoogle Scholar
  51. 51.
    E. Marode, J.P. Boeuf, in International Conference on Phenomena in Ionized Gase IGPIG 1983, Düsseldorf, Germany, 1983, p. 206Google Scholar
  52. 52.
    L.D. Tsendin, Plasma Sources Sci. Technol. 4, 200 (1995)CrossRefADSGoogle Scholar
  53. 53.
    U. Kortshagen, C. Busch, L.D. Tsendin, Plasma Sources Sci. Technol. 5, 1 (1996)CrossRefADSGoogle Scholar
  54. 54.
    R.E. Robson, in Gaseous Electronics and its Applications, edited by R.W. Crompton et al. (Kluwer, Dordrecht, 1997), pp. 89–101Google Scholar
  55. 55.
    H. Date, K. Kondo, S. Yachi, H. Tagashira, J. Phys. D 25, 1330 (1992)CrossRefADSGoogle Scholar
  56. 56.
    B. Li, Ph.D. thesis, James Cook University, 1999Google Scholar
  57. 57.
    J. Franck, G. Hertz, Phys. Z. 20, 132 (1919)Google Scholar
  58. 58.
    N. Bohr, Phil. Mag. 30, 394 (1915)CrossRefGoogle Scholar
  59. 59.
    G.F. Hanne, Am. J. Phys. 56, 696 (1988)CrossRefADSGoogle Scholar
  60. 60.
    R.D. White, R.E. Robson, P. Nicoletopoulos, S. Dujko, Eur. Phys. J. D 66, 117 (2012)CrossRefADSGoogle Scholar
  61. 61.
    P. Magyar, I. Korolov, Z. Donko, Phys. Rev. E 85, 056409 (2012)CrossRefADSGoogle Scholar
  62. 62.
    M. Hayashi, NIFS-DATA-72 (2003), www.nifs.ac.jp/report/nifs-data072.html
  63. 63.
    G. Rapior, K. Sengstock, V. Baev, Am. J. Phys. 74, 423 (2006)CrossRefGoogle Scholar
  64. 64.
    E.A. Mason, E.W. McDaniel, Transport Properties of Ions in Gases (Wiley, New York, 1988)Google Scholar
  65. 65.
    R.E. Robson, Introductory Transport Theory for Charged Particles in Gases (World Scientific, Singapore, 2006)Google Scholar
  66. 66.
    K. Kumar, H.R. Skullerud, R.E. Robson, Aust. J. Phys. 33, 343 (1980)CrossRefMathSciNetADSGoogle Scholar
  67. 67.
    P. Nicoletopoulos, R.E. Robson, Phys. Rev. Lett. 100, 124502 (2008)CrossRefADSGoogle Scholar
  68. 68.
    R.E. Robson, J. Chem. Phys. 85, 4486 (1986)CrossRefADSGoogle Scholar
  69. 69.
    F. Sigeneger, R. Winkler, R.E. Robson, Contr. Plasma Phys. 43, 178 (2003)CrossRefADSGoogle Scholar
  70. 70.
    C.S. Wang-Chang, G.E. Uhlenbeck, J. de Boer, in Studies in Statistical Mechanics (Wiley, New York, 1964), Vol. II, p. 241Google Scholar
  71. 71.
    R.E. Marshak, Phys. Rev. 71, 443 (1947)CrossRefMATHMathSciNetADSGoogle Scholar
  72. 72.
    B. Li, R.D. White, R.E. Robson, J. Phys. D 35, 2914 (2002)CrossRefGoogle Scholar
  73. 73.
    P. Segur, A. Alkaa, S. Pineau, A. Zahraoui, B. Chouki, C. Moutarde, S. Laffont, Plasma Sources Sci. Technol. 4, 183 (1995)CrossRefADSGoogle Scholar
  74. 74.
    T. Kunst, B. Gétz, B. Schmidt, Nucl. Instrum. Meth. A 324, 127 (1993)CrossRefADSGoogle Scholar
  75. 75.
    B. Li, R.E. Robson, R.D. White, Phys. Rev. E 74, 026405 (2006)CrossRefADSGoogle Scholar
  76. 76.
    S. Dujko, R.D. White, R.E. Robson, Z.Lj. Petrović, Plasma Sources Sci. Technol. 20, 024013 (2011)CrossRefADSGoogle Scholar
  77. 77.
    J. Lucas, H. Saelee, J. Phys. D 8, 640 (1975)CrossRefADSGoogle Scholar
  78. 78.
    S. Dujko, R.D. White, Z.Lj. Petrović, J. Phys. D 41, 24205 (2008)CrossRefGoogle Scholar
  79. 79.
    R.E. Robson, R.D. White, Z.Lj. Petrović, Rev. Mod. Phys. 77, 1303 (2005)CrossRefADSGoogle Scholar
  80. 80.
    P. Nicoletopoulos, R.E. Robson, R.D. White, J. Chem. Phys. 137, 214112 (2012)CrossRefADSGoogle Scholar
  81. 81.
    M. Surendra, M. Dalvie, Phys. Rev. E 48, 3914 (1993)CrossRefADSGoogle Scholar
  82. 82.
    F. Sigeneger, R. Winkler, IEEE Trans. Plasma Sci. 27, 1254 (1999)CrossRefADSGoogle Scholar
  83. 83.
    P. Nicoletopoulos, R.E. Robson, R.D. White, Phys. Rev. E 85, 046404 (2012)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Robert E. Robson
    • 1
    • 2
  • Ronald D. White
    • 1
  • Malte Hildebrandt
    • 3
  1. 1.School of Engineering and Physical SciencesJames Cook UniversityTownsvilleAustralia
  2. 2.Research School of Physical Science & EngineeringAustralian National UniversityCanberraAustralia
  3. 3.Laboratory for Particle PhysicsPaul Scherrer InstituteVilligen PSISwitzerland

Personalised recommendations