Effect of squeezing and Planck constant dependence in short time semiclassical entanglement

  • Sijo K. Joseph
  • Lock Yue Chew
  • Miguel A.F. Sanjuan
Regular Article

Abstract

In this paper, we investigate into the short time semiclassical entanglement of a general class of two-coupled harmonic oscillator system that includes additional nonlinear terms in the potential of the form λxmyn, such that the sum of the degree m and n equals to a fixed constant. An analytical expression of the short time linear entropy is derived and it shows a clear relationship between the single mode squeezing and the entanglement dynamics. In addition to that, our theoretical analysis has shown that the short time semiclassical entanglement entropy displays a dependence on the Planck constant ħ of the form ħm + n − 2 for this class of systems. By applying our results to the linearly coupled harmonic oscillator, the Barbanis-Contopoulos, the Hénon-Heiles and the Pullen-Edmonds Hamiltonian, we have found a good correspondence between the numerical and analytical results in the short-time regime. Interestingly, our results have demonstrated both analytically and numerically that an appropriate manipulation of initial squeezing can have the significant effect of enhancing the short time semiclassical entanglement between the two subsystems.

Keywords

Nonlinear Dynamics 

References

  1. 1.
    R.M. Angelo, K. Furuya, Phys. Rev. A 71, 042321 (2005) ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    M. Žnidarič, T. Prosen, Phys. Rev. A 71, 032103 (2005) ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    P. Jacquod, Phys. Rev. Lett. 92, 150403 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    J.N. Bandyopadhyay, A. Lakshminarayan, Phys. Rev. Lett. 89, 060402 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    J.N. Bandyopadhyay, A. Lakshminarayan, Phys. Rev. E 69, 016201 (2004) ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    P.A. Miller, S. Sarkar, Phys. Rev. E 60, 1542 (1999) ADSCrossRefGoogle Scholar
  7. 7.
    H. Fujisaki, T. Miyadera, A. Tanaka, Phys. Rev. E 67, 066201 (2003) ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. Chaudhury, A. Smith, B.E. Anderson, S. Ghose, P.S. Jessen, Nature 461, 768 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    M. Lombardi, A. Matzkin, Phys. Rev. E 83, 016207 (2011) ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    U.L. Andersen, G. Leuchs, C. Silberhorn, Laser Photon. Rev. 4, 337 (2010) CrossRefGoogle Scholar
  11. 11.
    S.L. Braunstein, P. van Loock, Rev. Mod. Phys. 77, 513 (2003) ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    C. Weedbrook, S. Pirandola, R. Garcia-Patron, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Rev. Mod. Phys. 84, 621 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, R. Werner, Phys. Rev. Lett. 109, 100502 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    S. Furuichi, A.A. Mahmoud, J. Phys. A 34, 6851 (2001) ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    C.H. Er, N.N. Chung, L.Y. Chew, Phys. Scr. 87, 025001 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    B. Shao, S. Xiang, K. Song, Chin. Phys. B 18, 418 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    F. Galve, L.A. Pachón, D. Zueco, Phys. Rev. Lett. 105, 180501 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    X. Wang, B.C. Sanders, Phys. Rev. A 68, 012101 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    F.A. Beduini, M.W. Mitchell, Phys. Rev. Lett. 111, 143601 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    G. Contopoulos, Z. Astrophys. 49, 273 (1960) ADSMATHMathSciNetGoogle Scholar
  21. 21.
    B. Barbanis, ApJ 71, 415 (1966) ADSGoogle Scholar
  22. 22.
    M. Hénon, C. Heiles, Astron. J. 69, 73 (1964) ADSCrossRefGoogle Scholar
  23. 23.
    J. Aguirre, J.C. Vallejo, M.A.F. Sanjuán, Phys. Rev. E 64, 066208 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    R. Barrio, Int. J. Bifurcat. Chaos 16, 2777 (2006) CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    R. Barrio, W. Borczyk, S. Breiter, Chaos Solitons Fractals 40, 1697 (2009) ADSCrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    F. Blesa, J.M. Seoane, R. Barrio, M.A.F. Sanjuán, Int. J. Bifurcat. Chaos 22, 1230010 (2012) CrossRefGoogle Scholar
  27. 27.
    H.J. Zhao, M.L. Du, Phys. Rev. E 76, 027201 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    N. Pomphrey, J. Phys. B 7, 1909 (1974) ADSCrossRefGoogle Scholar
  29. 29.
    R.A. Pullen, A.R. Edmonds, J. Phys. A 14, L477 (1981) ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    N.N. Chung, L.Y. Chew, Phys. Rev. A 76, 032113 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    N.N. Chung, L.Y. Chew, Phys. Rev. A 80, 012103 (2009) ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    M. Carioli, E.J. Heller, K.B. Møller, J. Chem. Phys. 106, 8564 (1997) ADSCrossRefGoogle Scholar
  33. 33.
    M. Feit, J.A. Fleck, A. Steiger, J. Comput. Phys. 47, 412 (1982) ADSCrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    M.D. Feit, J.A. Fleck, J. Chem. Phys. 80, 2578 (1984) ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    A. Bogdanov, Y. Bogdanov, K. Valiev, Russian Microelectronics 35, 7 (2006) CrossRefGoogle Scholar
  36. 36.
    S. Parker, S. Bose, M.B. Plenio, Phys. Rev. A 61, 032305 (2000) ADSCrossRefGoogle Scholar
  37. 37.
    J. Rai, C.L. Mehta, Phys. Rev. A 37, 4497 (1988) ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    F. Hong-Yi, J. VanderLinde, Phys. Rev. A 39, 1552 (1989) ADSCrossRefGoogle Scholar
  39. 39.
    K.B. Møller, T.G. Jørgensen, J.P. Dahl, Phys. Rev. A 54, 5378 (1996) ADSCrossRefGoogle Scholar
  40. 40.
    J.N. Hollenhorst, Phys. Rev. D 19, 1669 (1979) ADSCrossRefGoogle Scholar
  41. 41.
    C.M. Caves, Phys. Rev. D 23, 1693 (1981) ADSCrossRefGoogle Scholar
  42. 42.
    F. Casas, A. Murua, M. Nadinic, Comput. Phys. Commun. 183, 2386 (2012) ADSCrossRefMathSciNetGoogle Scholar
  43. 43.
    V. Fessatidis, J. Mancini, S. Bowen, M. Campuzano, J. Math. Chem. 44, 20 (2008) CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    S.-H. Zhang, Q.-L. Jie, Phys. Rev. A 77, 012312 (2008) ADSCrossRefGoogle Scholar
  45. 45.
    J.I. Kim, M.C. Nemes, A.F.R. de Toledo Piza, H.E. Borges, Phys. Rev. Lett. 77, 207 (1996) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sijo K. Joseph
    • 1
  • Lock Yue Chew
    • 2
  • Miguel A.F. Sanjuan
    • 1
  1. 1.Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física Universidad Rey Juan CarlosMadridSpain
  2. 2.Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological UniversitySingaporeRepublic of Singapore

Personalised recommendations