Applied Bohmian mechanics

  • Albert Benseny
  • Guillermo Albareda
  • Ángel S. Sanz
  • Jordi Mompart
  • Xavier Oriols
Topical Review

Abstract

Bohmian mechanics provides an explanation of quantum phenomena in terms of point-like particles guided by wave functions. This review focuses on the use of nonrelativistic Bohmian mechanics to address practical problems, rather than on its interpretation. Although the Bohmian and standard quantum theories have different formalisms, both give exactly the same predictions for all phenomena. Fifteen years ago, the quantum chemistry community began to study the practical usefulness of Bohmian mechanics. Since then, the scientific community has mainly applied it to study the (unitary) evolution of single-particle wave functions, either by developing efficient quantum trajectory algorithms or by providing a trajectory-based explanation of complicated quantum phenomena. Here we present a large list of examples showing how the Bohmian formalism provides a useful solution in different forefront research fields for this kind of problems (where the Bohmian and the quantum hydrodynamic formalisms coincide). In addition, this work also emphasizes that the Bohmian formalism can be a useful tool in other types of (nonunitary and nonlinear) quantum problems where the influence of the environment or the nonsimulated degrees of freedom are relevant. This review contains also examples on the use of the Bohmian formalism for the many-body problem, decoherence and measurement processes. The ability of the Bohmian formalism to analyze this last type of problems for (open) quantum systems remains mainly unexplored by the scientific community. The authors of this review are convinced that the final status of the Bohmian theory among the scientific community will be greatly influenced by its potential success in those types of problems that present nonunitary and/or nonlinear quantum evolutions. A brief introduction of the Bohmian formalism and some of its extensions are presented in the last part of this review.

Keywords

Applied Bohmian Mechanics 

References

  1. 1.
    H. Goldstein, C.P. Poole Jr., J.L. Safko, Classical Mechanics, 3rd edn. (Pearson New International Edition, United States of America, 2014) Google Scholar
  2. 2.
    M. Born, Z. Phys. 37, 863 (1926) MATHADSGoogle Scholar
  3. 3.
    M. Born, W. Heisenberg, P. Jordan, Z. Phys. 35, 557 (1925), english translation in Ref. [426] ADSGoogle Scholar
  4. 4.
    M. Born, P. Jordan, Z. Phys. 34, 858 (1925), english translation in Ref. [426] MATHADSGoogle Scholar
  5. 5.
    G. Bacciagaluppi, A. Valentini, Quantum Theory at the Cross-roads: Reconsidering the 1927 Solvay Conference (Cambridge University Press, Cambridge, 2009) Google Scholar
  6. 6.
    C. Cohen-Tannoudji, B. Diu, F. Laloë, in Quantum Mechanics, (John Wiley & Sons, Paris, 1978), Vols. I and II Google Scholar
  7. 7.
    R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965) Google Scholar
  8. 8.
    Bohmian Mechanics and Quantum Theory: An Appraisal, edited by J.T. Cushing, A. Fine, S. Goldstein (Kluwer Academic Publishers, Dordrecht, 1996) Google Scholar
  9. 9.
    Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology, edited by X. Oriols, J. Mompart (Pan Stanford Publishing, Singapore, 2011) Google Scholar
  10. 10.
    D. Dürr, S. Teufel, Bohmian Mechanics: The Physics and Mathematics of Quantum Theory (Spinger, Germany, 2009) Google Scholar
  11. 11.
    D. Dürr, S. Goldstein, N. Zanghì, Quantum Physics Without Quantum Philosophy (Spinger, Germany, 2012) Google Scholar
  12. 12.
    L. de Broglie, Ann. Phys. 3, 22 (1925) MATHGoogle Scholar
  13. 13.
    L. de Broglie, J. Phys. Radium 8, 225 (1927) MATHGoogle Scholar
  14. 14.
    J.S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, United Kingdom, 2004) Google Scholar
  15. 15.
    D. Bohm, Phys. Rev. 85, 166 (1952) MathSciNetMATHADSGoogle Scholar
  16. 16.
    D. Bohm, Phys. Rev. 85, 180 (1952) MathSciNetADSGoogle Scholar
  17. 17.
    D. Bohm, Phys. Rev. 89, 458 (1953) MathSciNetMATHADSGoogle Scholar
  18. 18.
    P.R. Holland, The Quantum Theory of Motion: An account of the de Broglie-Bohm Causal Interpretation of Quantum mechanics (Cambridge University Press, Cambridge, 1993) Google Scholar
  19. 19.
    D. Bohm, B.J. Hiley, The Undivided Universe (Routledge, New York, 1993) Google Scholar
  20. 20.
    Private exchange of letters between S. Goldstein and S. Weinberg, http://www.mathematik.uni-muenchen.de/˜bohmmech/BohmHome/weingold.htm
  21. 21.
    E. Madelung, Z. Phys. 40, 322 (1926) MATHADSGoogle Scholar
  22. 22.
    D. Dürr, S. Goldstein, N. Zanghì, J. Stat. Phys. 116, 959 (2004) MATHADSGoogle Scholar
  23. 23.
    J.S. Parker, G.S.J. Armstrong, M. Boca, K.T. Taylor, J. Phys. B 42, 134011 (2009) ADSGoogle Scholar
  24. 24.
    M. Schlosser, S. Tichelmann, J. Kruse, G. Birkl, Quantum Inf. Process. 10, 907 (2011) Google Scholar
  25. 25.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002) ADSGoogle Scholar
  26. 26.
    M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold atoms in optical lattices: Simulating quantum many-body systems (Oxford University Press, Oxford, 2012) Google Scholar
  27. 27.
    A. Benseny, J. Bagudà, X. Oriols, J. Mompart, Phys. Rev. A 85, 053619 (2012) ADSGoogle Scholar
  28. 28.
    K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, J. Mompart, Phys. Rev. A 70, 023606 (2004) ADSGoogle Scholar
  29. 29.
    K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998) ADSGoogle Scholar
  30. 30.
    M. Rab, J.H. Cole, N.G. Parker, A.D. Greentree, L.C.L. Hollenberg, A.M. Martin, Phys. Rev. A 77, 061602 (2008) ADSGoogle Scholar
  31. 31.
    C. Leavens, R. Sala Mayato, Ann. Phys. 7, 662 (1998) MATHGoogle Scholar
  32. 32.
    D.V. Tausk, R. Tumulka, J. Math. Phys. 51, 122306 (2010) MathSciNetADSGoogle Scholar
  33. 33.
    J. Huneke, G. Platero, S. Kohler, Phys. Rev. Lett. 110, 036802 (2013) ADSGoogle Scholar
  34. 34.
    A. Benseny, S. Fernández-Vidal, J. Bagudà, R. Corbalán, A. Picón, L. Roso, G. Birkl, J. Mompart, Phys. Rev. A 82, 013604 (2010) ADSGoogle Scholar
  35. 35.
    X. Oriols, Phys. Rev. Lett. 98, 066803 (2007) ADSGoogle Scholar
  36. 36.
    M.E. Tuckerman, J. Phys.: Condens. Matter 14, R1297 (2002) MathSciNetADSGoogle Scholar
  37. 37.
    S.A. Harich, D. Dai, C.C. Wang, X. Yang, S. Der Chao, R.T. Skodje, Nature 419, 281 (2002) ADSGoogle Scholar
  38. 38.
    J.C. Tully, J. Chem. Phys. 137, 22 (2012) Google Scholar
  39. 39.
    S. Hammes-Schiffer, A.V. Soudackov, J. Phys. Chem. B 112, 14108 (2008) Google Scholar
  40. 40.
    A. Aviram, M.A. Ratner, Chem. Phys. Lett. 29, 277 (1974) ADSGoogle Scholar
  41. 41.
    A. McLachlan, Mol. Phys. 8, 39 (1964) MathSciNetADSGoogle Scholar
  42. 42.
    D.A. Micha, J. Chem. Phys. 78, 7138 (1983) MathSciNetADSGoogle Scholar
  43. 43.
    Z. Kirson, R.B. Gerber, A. Nitzan, M.A. Ratner, Surf. Sci. 137, 527 (1984) ADSGoogle Scholar
  44. 44.
    S.I. Sawada, A. Nitzan, H. Metiu, Phys. Rev. B 32, 851 (1985) ADSGoogle Scholar
  45. 45.
    J.C. Tully, R.K. Preston, J. Chem. Phys. 55, 562 (1971) ADSGoogle Scholar
  46. 46.
    J.C. Tully, J. Chem. Phys. 93, 1061 (1990) ADSGoogle Scholar
  47. 47.
    Y. Arasaki, K. Takatsuka, K. Wang, V. McKoy, Phys. Rev. Lett. 90, 248303 (2003) ADSGoogle Scholar
  48. 48.
    B.R. Landry, J.E. Subotnik, J. Chem. Phys. 137, 22A513 (2012) Google Scholar
  49. 49.
    I. Horenko, C. Salzmann, B. Schmidt, C. Schütte, J. Chem. Phys. 117, 11075 (2002) ADSGoogle Scholar
  50. 50.
    M.H. Beck, A. Jäckle, G. Worth, H.D. Meyer, Phys. Rep. 324, 1 (2000) ADSGoogle Scholar
  51. 51.
    I. Burghardt, H.D. Meyer, L. Cederbaum, J. Chem. Phys. 111, 2927 (1999) ADSGoogle Scholar
  52. 52.
    T.J. Martinez, M. Ben-Nun, R.D. Levine, J. Phys. Chem. 100, 7884 (1996) Google Scholar
  53. 53.
    C.L. Lopreore, R.E. Wyatt, Phys. Rev. Lett. 82, 5190 (1999) ADSGoogle Scholar
  54. 54.
    R.E. Wyatt, C.L. Lopreore, G. Parlant, J. Chem. Phys. 114, 5113 (2001) ADSGoogle Scholar
  55. 55.
    C.L. Lopreore, R.E. Wyatt, J. Chem. Phys. 116, 1228 (2002) ADSGoogle Scholar
  56. 56.
    B.F. Curchod, I. Tavernelli, U. Rothlisberger, Phys. Chem. Chem. Phys. 13, 3231 (2011) Google Scholar
  57. 57.
    I. Tavernelli, B.F.E. Curchod, A. Laktionov, U. Rothlisberger, J. Chem. Phys. 133, 194104 (2010) ADSGoogle Scholar
  58. 58.
    E. Gindensperger, C. Meier, J.A. Beswick, J. Chem. Phys. 113, 9369 (2000) ADSGoogle Scholar
  59. 59.
    C. Meier, Phys. Rev. Lett. 93, 173003 (2004) ADSGoogle Scholar
  60. 60.
    O.V. Prezhdo, C. Brooksby, Phys. Rev. Lett. 86, 3215 (2001) ADSGoogle Scholar
  61. 61.
    S. Garashchuk, V. Rassolov, O. Prezhdo, in Reviews in Computational Chemistry, edited by K.B. Lipkowitz (John Wiley & Sons, Inc., New York, 2010), Vol. 27, Chap. Semiclassical Bohmian Dynamics, pp. 287–368 Google Scholar
  62. 62.
    I.P. Christov, J. Chem. Phys. 129, 214107 (2008) ADSGoogle Scholar
  63. 63.
    N. Zamstein, D.J. Tannor, J. Chem. Phys. 137, 22A517 (2012) Google Scholar
  64. 64.
    N. Zamstein, D.J. Tannor, J. Chem. Phys. 137, 22A518 (2012) Google Scholar
  65. 65.
    J. Schiff, B. Poirier, J. Chem. Phys. 136, 031102 (2012) ADSGoogle Scholar
  66. 66.
    G. Albareda, H. Appel, I. Franco, A. Abedi, A. Rubio, Phys. Rev. Lett. 113, 083003 (2014) ADSGoogle Scholar
  67. 67.
    Attosecond Physics, in Springer Series in Optical Sciences, edited by L. Plaja, R. Torres, A. Zaïr, (Springer, Berlin, Heidelberg, 2013) Google Scholar
  68. 68.
    D.B. Milošević, G.G. Paulus, D. Bauer, W. Becker, J. Phys. B 39, R203 (2006) ADSGoogle Scholar
  69. 69.
    C. Winterfeldt, C. Spielmann, G. Gerber, Rev. Mod. Phys. 80, 117 (2008) ADSGoogle Scholar
  70. 70.
    C. Altucci, J. Tisch, R. Velotta, J. Mod. Opt. 58, 1585 (2011) ADSGoogle Scholar
  71. 71.
    T. Popmintchev et al., Science 336, 1287 (2012) MathSciNetADSGoogle Scholar
  72. 72.
    C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, S. Stagira, Nat. Phys. 7, 822 (2011) Google Scholar
  73. 73.
    C. Ruiz, L. Plaja, L. Roso, Phys. Rev. Lett. 94, 063002 (2005) ADSGoogle Scholar
  74. 74.
    J.S. Parker, K.J. Meharg, G.A. McKenna, K.T. Taylor, J. Phys. B 40, 1729 (2007) ADSGoogle Scholar
  75. 75.
    X.Y. Lai, Q.Y. Cai, M.S. Zhan, Eur. Phys. J. D 53, 393 (2009) ADSGoogle Scholar
  76. 76.
    X.Y. Lai, Q.Y. Cai, M.S. Zhan, Chin. Phys. B 19, 020302 (2010) ADSGoogle Scholar
  77. 77.
    A. Benseny, A. Picón, J. Mompart, L. Plaja, L. Roso, in Applied Bohmian mechanics: From nanoscale systems to cosmology, edited by X. Oriols, J. Mompart (Pan Stanford Publishing, Singapore, 2012), Chap. Hydrogen photoionization with strong lasers Google Scholar
  78. 78.
    X.Y. Lai, Q.Y. Cai, M.S. Zhan, New J. Phys. 11, 113035 (2009) ADSGoogle Scholar
  79. 79.
    F.H.M. Faisal, U. Schwengelbeck, Pramana 51, 585 (1998) ADSGoogle Scholar
  80. 80.
    P. Botheron, B. Pons, Phys. Rev. A 82, 021404 (2010) ADSGoogle Scholar
  81. 81.
    I.P. Christov, in AIP Conference Proceedings (AIP Publishing, 2010), Vol. 1228, pp. 379–392 Google Scholar
  82. 82.
    I.P. Christov, J. Phys. Chem. A 113, 6016 (2009) Google Scholar
  83. 83.
    I.P. Christov, New J. Phys. 9, 70 (2007) ADSGoogle Scholar
  84. 84.
    I.P. Christov, Opt. Express 14, 6906 (2006) ADSGoogle Scholar
  85. 85.
    I.P. Christov, J. Chem. Phys. 127, 134110 (2007) ADSGoogle Scholar
  86. 86.
    I.P. Christov, J. Chem. Phys. 135, 044120 (2011) ADSGoogle Scholar
  87. 87.
    I.P. Christov, J. Chem. Phys. 128, 244106 (2008) ADSGoogle Scholar
  88. 88.
    I.P. Christov, J. Chem. Phys. 136, 034116 (2012) ADSGoogle Scholar
  89. 89.
    Y. Song, F.M. Guo, S.Y. Li, J.G. Chen, S.L. Zeng, Y.J. Yang, Phys. Rev. A 86, 033424 (2012) ADSGoogle Scholar
  90. 90.
    J. Wu, B.B. Augstein, C. Figueira de Morisson Faria, Phys. Rev. A 88, 023415 (2013) ADSGoogle Scholar
  91. 91.
    J. Wu, B.B. Augstein, C. Figueira de Morisson Faria, Phys. Rev. A 88, 063416 (2013) ADSGoogle Scholar
  92. 92.
    A. Picón, J. Mompart, J.R. Vázquez de Aldana, L. Plaja, G.F. Calvo, L. Roso, Opt. Express 18, 3660 (2010) Google Scholar
  93. 93.
    A. Picón, A. Benseny, J. Mompart, J.R. Vázquez de Aldana, L. Plaja, G.F. Calvo, L. Roso, New J. Phys. 12, 083053 (2010) ADSGoogle Scholar
  94. 94.
    N. Takemoto, A. Becker, Phys. Rev. Lett. 105, 203004 (2010) ADSGoogle Scholar
  95. 95.
    N. Takemoto, A. Becker, J. Chem. Phys. 134, 074309 (2011) ADSGoogle Scholar
  96. 96.
    R. Sawada, T. Sato, K.L. Ishikawa, Phys. Rev. A 90, 023404 (2014) ADSGoogle Scholar
  97. 97.
    R. Landauer, IBM J. Res. Dev. 1, 223 (1957) MathSciNetGoogle Scholar
  98. 98.
    M. Di Ventra, Electrical transport in nanoscale systems (Cambridge University Press, 2008) Google Scholar
  99. 99.
    J. Barker, R. Akis, D. Ferry, Superlattice Microst. 27, 319 (2000) ADSGoogle Scholar
  100. 100.
    H. Wu, D. Sprung, Phys. Lett. A 196, 229 (1994) ADSGoogle Scholar
  101. 101.
    L. Shifren, R. Akis, D. Ferry, Phys. Lett. A 274, 75 (2000) MATHADSGoogle Scholar
  102. 102.
    T. Lundberg, E. Sjöqvist, K.F. Berggren, J. Phys.: Condens. Matter 10, 5583 (1998) ADSGoogle Scholar
  103. 103.
    X. Oriols, J.J. García-García, F. Martín, J. Suñé, T. González, J. Mateos, D. Pardo, Appl. Phys. Lett. 72, 806 (1998) ADSGoogle Scholar
  104. 104.
    X. Oriols, J.J. Garcia-Garcia, F. Martín, J. Suñé, J. Mateos, T. González, D.P.O. Vanbesien, Semicond. Sci. Tech. 14, 532 (1999) ADSGoogle Scholar
  105. 105.
    X. Oriols, F. Martín, J. Suñé, Appl. Phys. Lett. 79, 1703 (2001) ADSGoogle Scholar
  106. 106.
    X. Oriols, F. Martín, J. Sueñé, Appl. Phys. Lett. 80, 4048 (2002) ADSGoogle Scholar
  107. 107.
    X. Oriols, IEEE Trans. Electron Devices 50, 1830 (2003) ADSGoogle Scholar
  108. 108.
    X. Oriols, A. Trois, G. Blouin, Appl. Phys. Lett. 85, 3596 (2004) ADSGoogle Scholar
  109. 109.
    M. Büttiker, H. Thomas, A. Prêtre, Phys. Lett. A 180, 364 (1993) ADSGoogle Scholar
  110. 110.
    X. Oriols, A. Alarcón, E. Fernàndez-Díaz, Phys. Rev. B 71, 245322 (2005) ADSGoogle Scholar
  111. 111.
    M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005) ADSGoogle Scholar
  112. 112.
    A.G. Kofman, S. Ashhab, F. Nori, Phys. Rep. 520, 43 (2012) MathSciNetADSGoogle Scholar
  113. 113.
    B. Reulet, J. Senzier, D.E. Prober, Phys. Rev. Lett. 91, 196601 (2003) ADSGoogle Scholar
  114. 114.
    Y. Bomze, G. Gershon, D. Shovkun, L.S. Levitov, M. Reznikov, Phys. Rev. Lett. 95, 176601 (2005) ADSGoogle Scholar
  115. 115.
    D.K. Ferry, A.M. Burke, R. Akis, R. Brunner, T.E. Day, R. Meisels, F. Kuchar, J.P. Bird, B.R. Bennett, Semicond. Sci. Tech. 26, 043001 (2011) ADSGoogle Scholar
  116. 116.
    N. Lambert, C. Emary, Y.N. Chen, F. Nori, Phys. Rev. Lett. 105, 176801 (2010) ADSGoogle Scholar
  117. 117.
    A.J. Leggett, A. Garg, Phys. Rev. Lett. 54, 857 (1985) MathSciNetADSGoogle Scholar
  118. 118.
    S. Gröblacher, T. Paterek, R. Kaltenbaek, Č. Brukner, M. Żukowski, M. Aspelmeyer, A. Zeilinger, Nature 446, 871 (2007) ADSGoogle Scholar
  119. 119.
    J. Romero, J. Leach, B. Jack, S. Barnett, M. Padgett, S. Franke-Arnold, New J. Phys. 12, 123007 (2010) ADSGoogle Scholar
  120. 120.
    X. Oriols, D. Ferry, J. Comput. Electron. 12, 317 (2013) Google Scholar
  121. 121.
    Y.M. Blanter, M. Büttiker, Phys. Rep. 336, 1 (2000) ADSGoogle Scholar
  122. 122.
    M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990) ADSGoogle Scholar
  123. 123.
    M. Büttiker, Phys. Rev. B 46, 12485 (1992) ADSGoogle Scholar
  124. 124.
    G. Albareda, D. Marian, A. Benali, S. Yaro, N. Zanghì, X. Oriols, J. Comput. Electron. 12, 405 (2013) Google Scholar
  125. 125.
    G. Albareda, H. López, X. Cartoixà, J. Sueñé, X. Oriols, Phys. Rev. B 82, 085301 (2010) ADSGoogle Scholar
  126. 126.
    G. Albareda, J. Suñé, X. Oriols, Phys. Rev. B 79, 075315 (2009) ADSGoogle Scholar
  127. 127.
    H. López, G. Albareda, X. Cartoixà, J. Suñé, X. Oriols, J. Comput. Electron. 7, 213 (2008) Google Scholar
  128. 128.
    G. Albareda, A. Benali, X. Oriols, J. Comput. Electron. 12, 730 (2013) Google Scholar
  129. 129.
    W. Shockley, J. Appl. Phys. 9, 635 (1938) ADSGoogle Scholar
  130. 130.
    S. Ramo, Proc. IRE 27, 584 (1939) Google Scholar
  131. 131.
    B. Pellegrini, Phys. Rev. B 34, 5921 (1986) ADSGoogle Scholar
  132. 132.
    B. Pellegrini, Nuovo Cimento D 15, 881 (1993) ADSGoogle Scholar
  133. 133.
    B. Pellegrini, Nuovo Cimento D 15, 855 (1993) ADSGoogle Scholar
  134. 134.
    G. Albareda, F. Traversa, A. Benali, X. Oriols, Fluct. Noise Lett. 11 (2012) Google Scholar
  135. 135.
    A. Alarcón, X. Oriols, J. Stat. Mech. 2009, P01051 (2009) Google Scholar
  136. 136.
    X. Oriols, E. Fernàndez-Díaz, A. Alvarez, A. Alarcón, Solid State Electron. 51, 306 (2007) ADSGoogle Scholar
  137. 137.
    A. Benali, F. Traversa, G. Albareda, M. Aghoutane, X. Oriols, Appl. Phys. Lett. 102, 173506 (2013) ADSGoogle Scholar
  138. 138.
    G. Albareda, X. Saura, X. Oriols, J. Suñé, J. Appl. Phys. 108, 043706 (2010) ADSGoogle Scholar
  139. 139.
    G. Albareda, D. Jiménez, X. Oriols, J. Stat. Mech.: Theory E 2009, P01044 (2009) Google Scholar
  140. 140.
    A. Benali, F. Traversa, G. Albareda, A. Alarcon, M. Aghoutane, X. Oriols, Fluct. Noise Lett. 11 (2012) Google Scholar
  141. 141.
    G. Albareda, F.L. Traversa, A. Benali, X. Oriols, in Applications of Monte Carlo Method in Science and Engineering, edited by S. Mordechai (Intech Pub., 2011), chap. Many-particle Monte Carlo Approach to Electron Transport Google Scholar
  142. 142.
    A. Alarcón, X. Cartoixà, X. Oriols, Phys. Stat. Sol. C 7, 2636 (2010) Google Scholar
  143. 143.
    M. Buttiker, IBM J. Res. Dev. 32, 63 (1988) MathSciNetGoogle Scholar
  144. 144.
    H. De Los Santos, K. Chui, D. Chow, H. Dunlap, IEEE Microw. Wirel. Co. 11, 193 (2001) Google Scholar
  145. 145.
    P. Mazumder, S. Kulkarni, M. Bhattacharya, J.P. Sun, G. Haddad, Proc. IEEE 86, 664 (1998) Google Scholar
  146. 146.
    X. Oriols, F. Martín, J. Suñé, Solid State Commun. 99, 123 (1996) ADSGoogle Scholar
  147. 147.
    R.C. Bowen, G. Klimeck, R. Lake, W. Frensley, T. Moise, J. Appl. Phys. 81, 3207 (1997) ADSGoogle Scholar
  148. 148.
    R. Lake, S. Datta, Phys. Rev. B 45, 6670 (1992) ADSGoogle Scholar
  149. 149.
    Y.M. Blanter, M. Büttiker, Phys. Rev. B 59, 10217 (1999) ADSGoogle Scholar
  150. 150.
    G. Iannaccone, G. Lombardi, M. Macucci, B. Pellegrini, Phys. Rev. Lett. 80, 1054 (1998) ADSGoogle Scholar
  151. 151.
    F.L. Traversa, E. Buccafurri, A. Alarcon, G. Albareda, R. Clerc, F. Calmon, A. Poncet, X. Oriols, IEEE T. Electron. Dev. 58, 2104 (2011) ADSGoogle Scholar
  152. 152.
    J. Bell, in Proceedings of the International School of Physics ‘Enrico Fermi’, course IL: Foundations of Quantum Mechanics, New York, Academic, 1971, pp. 171-81 Google Scholar
  153. 153.
    C. Dewdney, P. Holland, A. Kyprianidis, Phys. Lett. 119, 259 (1986) Google Scholar
  154. 154.
    D. Dürr, S. Goldstein, T. Norsen, W. Struyve, N. Zanghì, Proc. R. Soc. A 470, 20130699 (2013) Google Scholar
  155. 155.
    G. Horton, C. Dewdney, J. Phys. A 37, 11935 (2004) MathSciNetMATHADSGoogle Scholar
  156. 156.
    K. Berndl, D. Dürr, S. Goldstein, N. Zanghì, Phys. Rev. A 53, 2062 (1996) MathSciNetADSGoogle Scholar
  157. 157.
    G. Horton, C. Dewdney, J. Phys. A 34, 9871 (2001) MathSciNetMATHADSGoogle Scholar
  158. 158.
    C. Dewdney, G. Horton, J. Phys. A 35, 10117 (2002) MathSciNetMATHADSGoogle Scholar
  159. 159.
    H. Nikolić, Found. Phys. Lett. 18, 549 (2005) MathSciNetMATHGoogle Scholar
  160. 160.
    H. Nikolić, Int. J. Quantum Inf. 7, 595 (2009) MATHGoogle Scholar
  161. 161.
    H. Nikolić, Int. J. Quantum Inf. 9, 367 (2011) MathSciNetMATHGoogle Scholar
  162. 162.
    R. Tumulka, J. Phys. A 40, 3245 (2007) MathSciNetMATHADSGoogle Scholar
  163. 163.
    D. Dürr, S. Goldstein, R. Tumulka, N. Zanghì, Phys. Rev. Lett. 93, 090402 (2004) MathSciNetGoogle Scholar
  164. 164.
    S. Colin, W. Struyve, J. Phys. A 40, 7309 (2007) MathSciNetMATHADSGoogle Scholar
  165. 165.
    W. Struyve, J. Phys.: Conf. Ser. 306, 012047 (2011) ADSGoogle Scholar
  166. 166.
    W. Struyve, Rev. Prog. Phys. 73, 106001 (2010) MathSciNetADSGoogle Scholar
  167. 167.
    T. Takabayasi, Prog. Theor. Phys. 8, 143 (1952) MathSciNetMATHADSGoogle Scholar
  168. 168.
    P. Holland, Phys. Lett. A 128, 9 (1988) MathSciNetADSGoogle Scholar
  169. 169.
    A. Valentini, in Bohmian Mechanics and quantum Theory: An Appraisal, edited by A. Fine, J.T. Cushing, S. Goldstein (Kluwer, Dordrecht, 1996), Chap. Pilot-wave theory of fields, gravitation and cosmology, pp. 45–66 Google Scholar
  170. 170.
    W. Struyve, H. Westman, Proc. R. Soc. A 463, 3115 (2007) MathSciNetMATHADSGoogle Scholar
  171. 171.
    C. Callender, R. Weingard, in PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1994, pp. 218–227 Google Scholar
  172. 172.
    N. Pinto-Neto, Found. Phys. 35, 577 (2005) MathSciNetMATHADSGoogle Scholar
  173. 173.
    F. Shojai, S. Molladovoudi, Gen. Rel. Grav. 39, 795 (2007) MATHADSGoogle Scholar
  174. 174.
    J.A. de Barros, N. Pinto-Neto, M.A. Sagioro-Leal, Phys. Lett. A 241, 229 (1998) ADSGoogle Scholar
  175. 175.
    F. Shojai, M. Golshani, Int. J. Mod. Phys. A 13, 677 (1998) MathSciNetMATHADSGoogle Scholar
  176. 176.
    N. Pinto-Neto, E.S. Santini, F.T. Falciano, Phys. Lett. A 344, 131 (2005) MathSciNetMATHADSGoogle Scholar
  177. 177.
    S. Kocsis, B. Braverman, S. Ravets, M.J. Stevens, R.P. Mirin, L.K. Shalm, A.M. Steinberg, Science 332, 1170 (2011) ADSGoogle Scholar
  178. 178.
    A. Orefice, R. Giovanelli, D. Ditto, Found. Phys. 39, 256 (2009) MathSciNetMATHADSGoogle Scholar
  179. 179.
    J. Mazur, R.J. Rubin, J. Chem. Phys. 31, 1395 (1959) MathSciNetADSGoogle Scholar
  180. 180.
    A. Goldberg, H.M. Schey, J.L. Schwartz, Am. J. Phys. 35, 177 (1967) ADSGoogle Scholar
  181. 181.
    E.A. McCullough, R.E. Wyatt, J. Chem. Phys. 51, 1253 (1969) ADSGoogle Scholar
  182. 182.
    E.A. McCullough, R.E. Wyatt, J. Chem. Phys. 54, 3578 (1971) ADSGoogle Scholar
  183. 183.
    R.A. Marcus, J. Chem. Phys. 45, 4493 (1966) ADSGoogle Scholar
  184. 184.
    J.O. Hirschfelder, C.J. Goebel, L.W. Bruch, J. Chem. Phys. 61, 5456 (1974) ADSGoogle Scholar
  185. 185.
    J.O. Hirschfelder, J. Chem. Phys. 67, 5477 (1977) ADSGoogle Scholar
  186. 186.
    J.O. Hirschfelder, K.T. Tang, J. Chem. Phys. 64, 760 (1976) ADSGoogle Scholar
  187. 187.
    R.E. Wyatt, J. Chem. Phys. 111, 4406 (1999) ADSGoogle Scholar
  188. 188.
    A.S. Sanz, X. Giménez, J.M. Bofill, S. Miret-Artés, Chem. Phys. Lett. 478, 89 (2009) ADSGoogle Scholar
  189. 189.
    A.S. Sanz, X. Giménez, J.M. Bofill, S. Miret-Artés, Chem. Phys. Lett. 488, 235 (2010) ADSGoogle Scholar
  190. 190.
    A.S. Sanz, D. López-Durán, T. González-Lezana, Chem. Phys. 399, 151 (2012) ADSGoogle Scholar
  191. 191.
    J.O. Hirschfelder, A.C. Christoph, W.E. Palke, J. Chem. Phys. 61, 5435 (1974) ADSGoogle Scholar
  192. 192.
    C. Dewdney, B.J. Hiley, Found. Phys. 12, 27 (1982) ADSGoogle Scholar
  193. 193.
    R.E. Wyatt, Quantum Dynamics with Trajectories (Springer, New York, 2005) Google Scholar
  194. 194.
    J.O. Hirschfelder, K.T. Tang, J. Chem. Phys. 65, 470 (1976) ADSGoogle Scholar
  195. 195.
    I. Galbraith, Y.S. Ching, E. Abraham, Am. J. Phys. 52, 60 (1984) ADSGoogle Scholar
  196. 196.
    A.S. Sanz, S. Miret-Artés, J. Chem. Phys. 122, 014702 (2005) ADSGoogle Scholar
  197. 197.
    N. Delis, C. Efthymiopoulos, G. Contopoulos, Int. J. Bifurc. Chaos 22, 1250214 (2012) MathSciNetGoogle Scholar
  198. 198.
    C. Efthymiopoulos, N. Delis, G. Contopoulos, Ann. Phys. 327, 438 (2012) MATHADSGoogle Scholar
  199. 199.
    J.G. Muga, C.R. Leavens, Phys. Rep. 338, 353 (2000) MathSciNetADSGoogle Scholar
  200. 200.
    Time in Quantum Mechanics, in Lecture Notes in Physics, edited by J.G. Muga, R.S. Mayato, I.L. Egusquiza, (Springer, Berlin, 2002), Vol. 72 Google Scholar
  201. 201.
    Time in Quantum Mechanics – Vol. 2, in Lecture Notes in Physics, edited by J.G. Muga, A. Ruschhaupt, A. del Campo, (Springer, Berlin, 2009), Vol. 789 Google Scholar
  202. 202.
    A.S. Sanz, F. Borondo, S. Miret-Artés, Phys. Rev. B 61, 7743 (2000) ADSGoogle Scholar
  203. 203.
    A.S. Sanz, F. Borondo, S. Miret-Artés, Europhys. Lett. 55, 303 (2001) ADSGoogle Scholar
  204. 204.
    A.S. Sanz, F. Borondo, S. Miret-Artés, J. Phys.: Condens. Matter 14, 6109 (2002) ADSGoogle Scholar
  205. 205.
    A.S. Sanz, F. Borondo, S. Miret-Artés, J. Chem. Phys. 120, 8794 (2004) ADSGoogle Scholar
  206. 206.
    A.S. Sanz, F. Borondo, S. Miret-Artés, Phys. Rev. B 69, 115413 (2004) ADSGoogle Scholar
  207. 207.
    T. Takabayasi, Prog. Theor. Phys. 9, 187 (1953) MathSciNetMATHADSGoogle Scholar
  208. 208.
    C. Philippidis, C. Dewdney, B.J. Hiley, Nuovo Cimento 52B, 15 (1979) MathSciNetADSGoogle Scholar
  209. 209.
    A.S. Sanz, S. Miret-Artés, J. Phys. A 41, 435303 (2008) MathSciNetADSGoogle Scholar
  210. 210.
    R.D. Prosser, Int. J. Theor. Phys. 15, 169 (1976) Google Scholar
  211. 211.
    T. Wünscher, H. Hauptmann, F. Herrmann, Am. J. Phys. 70, 599 (2002) ADSGoogle Scholar
  212. 212.
    A.S. Sanz, M. Davidović, M. Božić, S. Miret-Artés, Ann. Phys. 325, 763 (2010) MATHADSGoogle Scholar
  213. 213.
    A.S. Sanz, S. Miret-Artés, J. Chem. Phys. 126, 234106 (2007) ADSGoogle Scholar
  214. 214.
    P.A.M. Dirac, Proc. R. Soc. Lond. A123, 714 (1929) ADSGoogle Scholar
  215. 215.
    M.P. Nightingale, C.J. Umrigar, Quantum Monte Carlo Methods in Physics and Chemistry (Springer, 1999) Google Scholar
  216. 216.
    D.R. Hartree, Math. Proc. Cambridge 24, 111 (1928) ADSGoogle Scholar
  217. 217.
    V. Fock, Z. Phys. 61, 126 (1930) MATHADSGoogle Scholar
  218. 218.
    W. Kohn, Rev. Mod. Phys. 71, 1253 (1998) ADSGoogle Scholar
  219. 219.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) MathSciNetADSGoogle Scholar
  220. 220.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) MathSciNetADSGoogle Scholar
  221. 221.
    J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002) ADSGoogle Scholar
  222. 222.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) ADSGoogle Scholar
  223. 223.
    J.H.F. Dmitry Nerukh, J.H. Frederick, Chem. Phys. Lett. 332, 145 (2000) ADSGoogle Scholar
  224. 224.
    L.D. Site, Physica B 349, 218 (2004) ADSGoogle Scholar
  225. 225.
    A. Donoso, C.C. Martens, Phys. Rev. Lett. 87, 223202 (2001) ADSGoogle Scholar
  226. 226.
    V.A. Rassolov, S. Garashchuk, Phys. Rev. A 71, 032511 (2005) ADSGoogle Scholar
  227. 227.
    A. Alarcón, S. Yaro, X. Cartoixà, X. Oriols, J. Phys.: Condens. Matter 25, 325601 (2013) Google Scholar
  228. 228.
    T. Norsen, Found. Phys. 40, 1858 (2010) MathSciNetMATHADSGoogle Scholar
  229. 229.
    T. Norsen, D. Marian, X. Oriols, submitted (2014) Google Scholar
  230. 230.
    J.S. Bell, Physics World 3, 33 (1990) Google Scholar
  231. 231.
    Y. Aharonov, D.Z. Albert, L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988) ADSGoogle Scholar
  232. 232.
    H.M. Wiseman, New J. Phys. 9, 165 (2007) ADSGoogle Scholar
  233. 233.
    B. Braverman, C. Simon, Phys. Rev. Lett. 110, 060406 (2013) ADSGoogle Scholar
  234. 234.
    F.L. Traversa, G. Albareda, M. Ventra, X. Oriols, Phys. Rev. A 87, 052124 (2013) ADSGoogle Scholar
  235. 235.
    D. Dürr, S. Goldstein, N. Zanghì, J. Stat. Phys. 134, 1023 (2009) MathSciNetMATHADSGoogle Scholar
  236. 236.
    J. Lundeen, C. Bamber, Phys. Rev. Lett. 108, 070402 (2012) ADSGoogle Scholar
  237. 237.
    J.S. Lundeen, B. Sutherland, A. Patel, C. Stewart, C. Bamber, Nature 474, 188 (2011) Google Scholar
  238. 238.
    T. Norsen, W. Struyve, Ann. Phys. 350, 166 (2014) ADSGoogle Scholar
  239. 239.
    W. Pauli, in Handbuch der Physik, 2nd edn. (Springer, Berlin, 1933), Vol. 24/1 Google Scholar
  240. 240.
    W. Pauli, General Principles of Quantum Mechanics (Springer, Berlin, 1980) Google Scholar
  241. 241.
    V.S. Olkhovsky, E. Recami, A.J. Gerasimchuk, Nuovo Cimento 22, 263 (1974) MathSciNetADSGoogle Scholar
  242. 242.
    V.S. Olkhovsky, Adv. Math. Phys. 2009, 859710 (2009) MathSciNetGoogle Scholar
  243. 243.
    Z.Y. Wang, C.D. Xiong, Ann. Phys. 322, 2304 (2007) MathSciNetMATHADSGoogle Scholar
  244. 244.
    C.R. Leavens, Solid State Commun. 74, 923 (1990) ADSGoogle Scholar
  245. 245.
    C.R. Leavens, Solid State Commun. 76, 253 (1990) ADSGoogle Scholar
  246. 246.
    C.R. Leavens, Phys. Lett. A 178, 27 (1993) ADSGoogle Scholar
  247. 247.
    C.R. Leavens, Solid State Commun. 25, 229 (1995) MathSciNetGoogle Scholar
  248. 248.
    N. Vona, G. Hinrichs, D. Dürr, Phys. Rev. Lett. 111, 220404 (2013) ADSGoogle Scholar
  249. 249.
    N. Vona, D. Dürr, in The Message of Quantum Science - Attempts Towards a Synthesis, edited by P. Blanchard, J. Fröhlich (Springer, Berlin, 2014), Chap. The role of the probability current for time measurements Google Scholar
  250. 250.
    M.V. Berry, Phys. Scr. 40, 335 (1989) MATHADSGoogle Scholar
  251. 251.
    W.H. Zurek, J.P. Paz, Phys. Rev. Lett. 72, 2508 (1994) ADSGoogle Scholar
  252. 252.
    A.S. Sanz, Y. Elran, P. Brumer, Phys. Rev. E 85, 036218 (2012) ADSGoogle Scholar
  253. 253.
    M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, New York, 1990) Google Scholar
  254. 254.
    L.E. Reichl, The Transition to Chaos in Conservative Classical Systems: Quantum Manifestations (Springer, Berlin, 1992) Google Scholar
  255. 255.
    O. Bohigas, M.J. Giannoni, C. Schmit, Phys. Rev. Lett. 52, 1 (1984) MathSciNetMATHADSGoogle Scholar
  256. 256.
    M.L. Mehta, Random Matrix Theory (Academic Press, New York, 1991) Google Scholar
  257. 257.
    G.M. Zaslavskii, N.N. Filonenko, Zh. Eksp. Teor. Fiz. 65, 643 (1973) Google Scholar
  258. 258.
    G.M. Zaslavskii, N.N. Filonenko, Sov. Phys. J. Exp. Theor. Phys. 38, 317 (1974) ADSGoogle Scholar
  259. 259.
    S.W. McDonald, A.N. Kaufman, Phys. Rev. Lett. 42, 1189 (1979) ADSGoogle Scholar
  260. 260.
    E.J. Heller, Phys. Rev. Lett. 53, 1515 (1984) MathSciNetADSGoogle Scholar
  261. 261.
    D. Dürr, S. Goldstein, N. Zanghì, J. Stat. Phys. 68, 259 (1992) MATHADSGoogle Scholar
  262. 262.
    H. Frisk, Phys. Lett. A 227, 139 (1997) MathSciNetMATHADSGoogle Scholar
  263. 263.
    R. Parmenter, R.W. Valentine, Phys. Lett. A 201, 1 (1995) MathSciNetMATHADSGoogle Scholar
  264. 264.
    R. Parmenter, R.W. Valentine, Phys. Lett. A 213, 319 (1996) MathSciNetADSGoogle Scholar
  265. 265.
    A.J. Makowski, P. Pepłoswski, S.T. Dembiński, Phys. Lett. A 266, 241 (2000) MathSciNetMATHADSGoogle Scholar
  266. 266.
    A.J. Makowski, M.F. Ackowiak, Acta Physica Polonica B 32, 2831 (2001) Google Scholar
  267. 267.
    O.F. de Alcantara Bonfim, J. Florencio, F.C.S. Barreto, Phys. Rev. E 58, R2693 (1998) ADSGoogle Scholar
  268. 268.
    O.F. de Alcantara Bonfim, J. Florencio, F.C.S. Barreto, Phys. Rev. E 277, 129 (2000) MATHGoogle Scholar
  269. 269.
    G.L. Baker, J.P. Gollub, Chaotic Dynamics: An Introduction, 2nd edn. (Cambridge University Press, Cambridge, 1996) Google Scholar
  270. 270.
    U. Schwengelbeck, F.H.M. Faisal, Phys. Lett. A 199, 281 (1995) MathSciNetMATHADSGoogle Scholar
  271. 271.
    F.H.M. Faisal, U. Schwengelbeck, Phys. Lett. A 207, 31 (1995) MathSciNetMATHADSGoogle Scholar
  272. 272.
    G. Iacomelli, M. Pettini, Phys. Lett. A 212, 29 (1996) MathSciNetMATHADSGoogle Scholar
  273. 273.
    S. Sengupta, P.K. Chattaraj, Phys. Lett. A 215, 119 (1996) ADSGoogle Scholar
  274. 274.
    P.K. Chattaraj, S. Sengupta, Curr. Sci. 71, 134 (1996) Google Scholar
  275. 275.
    P.K. Chattaraj, S. Sengupta, A. Poddar, Curr. Sci. 74, 758 (1998) Google Scholar
  276. 276.
    G.G. de Polavieja, Phys. Rev. A 53, 2059 (1996) ADSGoogle Scholar
  277. 277.
    G.G. de Polavieja, M.S. Child, Phys. Rev. E 55, 1451 (1997) ADSGoogle Scholar
  278. 278.
    G.G. de Polavieja, Phys. Lett. A 220, 303 (1996) MathSciNetMATHADSGoogle Scholar
  279. 279.
    S. Konkel, A.J. Makowski, Phys. Lett. A 238, 95 (1998) MathSciNetMATHADSGoogle Scholar
  280. 280.
    A.J. Makowski, Acta Physica Polonica B 33, 583 (2002) MathSciNetMATHADSGoogle Scholar
  281. 281.
    H. Wu, D.W.L. Sprung, Phys. Lett. A 261, 150 (1999) MathSciNetMATHADSGoogle Scholar
  282. 282.
    D.A. Wisniacki, E.R. Pujals, Europhys. Lett. 71, 159 (2005) MathSciNetADSGoogle Scholar
  283. 283.
    D.A. Wisniacki, E.R. Pujals, F. Borondo, J. Phys. A 40, 14353 (2007) MathSciNetMATHADSGoogle Scholar
  284. 284.
    C. Efthymiopoulos, C. Kalapotharakos, G. Contopoulos, J. Phys. A 40, 12945 (2007) MathSciNetMATHADSGoogle Scholar
  285. 285.
    G. Contopoulos, C. Efthymiopoulos, Celest. Mech. Dyn. Astron. 102, 219 (2008) MathSciNetMATHADSGoogle Scholar
  286. 286.
    C. Efthymiopoulos, C. Kalapotharakos, G. Contopoulos, Phys. Rev. E 79, 036203 (2009) MathSciNetADSGoogle Scholar
  287. 287.
    G. Contopoulos, N. Delis, C. Efthymiopoulos, J. Phys. A 45, 165301 (2011) MathSciNetADSGoogle Scholar
  288. 288.
    A. Valentini, H. Westman, Proc. R. Soc. A 461, 253 (2005) MathSciNetMATHADSGoogle Scholar
  289. 289.
    M.D. Towler, N.J. Russell, A. Valentini, Proc. R. Soc. A 468, 990 (2012) MathSciNetADSGoogle Scholar
  290. 290.
    K.G. Schlegel, S. Förster, Phys. Lett. A 372, 3620 (2008) MATHADSGoogle Scholar
  291. 291.
    A. Bennett, J. Phys. A 43, 5304 (2010) ADSGoogle Scholar
  292. 292.
    S. Colin, W. Struyve, New J. Phys. 12, 043008 (2010) MathSciNetADSGoogle Scholar
  293. 293.
    Y. Elran, P. Brumer, J. Chem. Phys. 138, 234308 (2013) ADSGoogle Scholar
  294. 294.
    A.S. Sanz, S. Miret-Artés, Ann. Phys. 339, 11 (2013) ADSGoogle Scholar
  295. 295.
    J.B. Maddox, E.R. Bittner, J. Chem. Phys. 115, 6309 (2001) ADSGoogle Scholar
  296. 296.
    J.B. Maddox, E.R. Bittner, Phys. Rev. E 65, 026143 (2002) ADSGoogle Scholar
  297. 297.
    Z.S. Wang, G.R. Darling, S. Holloway, J. Chem. Phys. 115, 10373 (2001) ADSGoogle Scholar
  298. 298.
    I. Burghardt, L.S. Cederbaum, J. Chem. Phys. 115, 10303 (2001) ADSGoogle Scholar
  299. 299.
    I. Burghardt, L.S. Cederbaum, J. Chem. Phys. 115, 10312 (2001) ADSGoogle Scholar
  300. 300.
    I. Burghardt, K.B. Møller, G. Parlant, L.S. Cederbaum, E.R. Bittner, Int. J. Quantum Chem. 100, 1153 (2004) Google Scholar
  301. 301.
    I. Burghardt, G. Parlant, J. Chem. Phys. 120, 3055 (2004) ADSGoogle Scholar
  302. 302.
    K.H. Hughes, S.M. Parry, G. Parlant, I. Burghardt, J. Phys. Chem. A 111, 10269 (2007) Google Scholar
  303. 303.
    S. Garashchuk, V. Dixit, B. Gu, J. Mazzuca, J. Chem. Phys. 138, 054107 (2013) ADSGoogle Scholar
  304. 304.
    E.R. Bittner, J. Chem. Phys. 119, 1358 (2003) ADSGoogle Scholar
  305. 305.
    Y. Zhao, N. Makri, J. Chem. Phys. 119, 60 (2003) ADSGoogle Scholar
  306. 306.
    J. Liu, N. Makri, J. Phys. Chem. A 108, 806 (2004) Google Scholar
  307. 307.
    J. Liu, N. Makri, J. Phys. Chem. A 108, 5408 (2004) Google Scholar
  308. 308.
    N. Rosen, Am. J. Phys. 32, 377 (1964) ADSGoogle Scholar
  309. 309.
    N. Rosen, Am. J. Phys. 32, 597 (1964) ADSGoogle Scholar
  310. 310.
    N. Rosen, Am. J. Phys. 33, 146 (1965) ADSGoogle Scholar
  311. 311.
    N. Rosen, Found. Phys. 16, 687 (1985) ADSGoogle Scholar
  312. 312.
    M.V. Berry, in Chaos and Quantum Physics, edited by M.J. Giannoni, A. Voros, J. Zinn-Justin (North-Holland, Amsterdam, 1996), Les Houches Lecture Series LII (1989), Chap. Some quantum-to-classical asymptotics, pp. 251–304 Google Scholar
  313. 313.
    R. Guantes, A.S. Sanz, J. Margalef-Roig, S. Miret-Artés, Surf. Sci. Rep. 53, 199 (2004) ADSGoogle Scholar
  314. 314.
    A. Drezet, Implications of protective measurements on de Broglie-Bohm trajectories, in Protective Measurements and Quantum Reality: Toward a New Understanding of Quantum Mechanics, edited by S. Gao (Cambridge University Press, Cambridge, 2014) Google Scholar
  315. 315.
    A.S. Sanz, S. Miret-Artés, A Trajectory Description of Quantum Processes. II. Applications, in Lecture Notes in Physics (Springer, Berlin, 2013), Vol. 831 Google Scholar
  316. 316.
    M.S. Child, Molecular Collision Theory (Academic Press, London, 1974) Google Scholar
  317. 317.
    A.S. Sanz, S. Miret-Artés, A Trajectory Description of Quantum Processes. I. Fundamentals, in Lecture Notes in Physics (Springer, Berlin, 2012), Vol. 850 Google Scholar
  318. 318.
    X. Oriols, F. Martín, J. Suñé, Phys. Rev. A 54, 2594 (1996) ADSGoogle Scholar
  319. 319.
    A.J. Makowski, Phys. Rev. A 65, 032103 (2002) MathSciNetADSGoogle Scholar
  320. 320.
    A.J. Makowski, K.J. Górska, Phys. Rev. A 66, 062103 (2002) MathSciNetADSGoogle Scholar
  321. 321.
    P.R. Holland, in Bohmian Mechanics and Quantum Theory: An Appraisal, edited by J.T. Cushing, A. Fine, S. Goldstein (Kluwer, Dordrecht, 1996), pp. 99–220 Google Scholar
  322. 322.
    A.O. Bolivar, Can. J. Phys. 81, 971 (2003) ADSGoogle Scholar
  323. 323.
    A.O. Bolivar, Quantum-Classical Correspondence. Dynamical Quantization and the Classical Limit (Springer, Berlin, 2004) Google Scholar
  324. 324.
    A. Matzkin, Phys. Lett. A 361, 294 (2007) MathSciNetMATHADSGoogle Scholar
  325. 325.
    A. Matzkin, V. Nurock, Studies in History and Philosophy of Modern Physics B 39, 17 (2008) MathSciNetMATHGoogle Scholar
  326. 326.
    A. Matzkin, J. Phys.: Conf. Ser. 174, 012039 (2009) ADSGoogle Scholar
  327. 327.
    A. Matzkin, V. Nurock, Found. Phys. 39, 903 (2009) MathSciNetMATHADSGoogle Scholar
  328. 328.
    D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.O. Stamatescu, H.D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. (Springer, 1996, Berlin) Google Scholar
  329. 329.
    M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer, Berlin, 2007) Google Scholar
  330. 330.
    C. Dewdney, Found. Phys. 18, 867 (1988) MathSciNetADSGoogle Scholar
  331. 331.
    M.M. Lam, C. Dewdney, Phys. Lett. A 150, 127 (1990) ADSGoogle Scholar
  332. 332.
    O. Maroney, B.J. Hiley, Found. Phys. 29, 1403 (1999) MathSciNetGoogle Scholar
  333. 333.
    M. Golshani, O. Akhavan, J. Phys. A 34, 5259 (2001) MathSciNetMATHADSGoogle Scholar
  334. 334.
    P. Ghose, Pramana 59, 417 (2002) ADSGoogle Scholar
  335. 335.
    L. Marchildon, J. Mod. Opt. 50, 873 (2003) MathSciNetMATHADSGoogle Scholar
  336. 336.
    E. Guay, L. Marchildon, J. Phys. A 36, 5617 (2003) MathSciNetMATHADSGoogle Scholar
  337. 337.
    W. Struyve, W.D. Baere, J.D. Neve, S.D. Weirdt, J. Phys. A 36, 1525 (2003) MathSciNetMATHADSGoogle Scholar
  338. 338.
    T. Durt, Y. Pierseaux, Phys. Rev. A 66, 052109 (2002) MathSciNetADSGoogle Scholar
  339. 339.
    K. Na, R.E. Wyatt, Phys. Lett. A 306, 97 (2002) MATHADSGoogle Scholar
  340. 340.
    K. Na, R.E. Wyatt, Phys. Scr. 67, 169 (2003) MATHADSGoogle Scholar
  341. 341.
    H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002) Google Scholar
  342. 342.
    V. Allori, D. Dürr, N. Zanghí, S. Goldstein, J. Opt. B 4, 482 (2002) ADSGoogle Scholar
  343. 343.
    E. Gindensperger, C. Meier, J.A. Beswick, J. Chem. Phys. 116, 8 (2002) ADSGoogle Scholar
  344. 344.
    E. Gindensperger, C. Meier, J.A. Beswick, J. Chem. Phys. 116, 10051 (2002) ADSGoogle Scholar
  345. 345.
    E. Gindensperger, C. Meier, J.A. Beswick, Adv. Quant. Chem. 47, 331 (2004) Google Scholar
  346. 346.
    C. Meier, J.A. Beswick, J. Chem. Phys. 121, 4550 (2004) ADSGoogle Scholar
  347. 347.
    M. Daumer, D. Dürr, S. Goldstein, N. Zanghì, Erkenntnis 45, 379 (1996) MathSciNetGoogle Scholar
  348. 348.
    R.E. Wyatt, in Quantum Dynamics with Trajectories (Springer, New York, 2005), pp. 235–253 Google Scholar
  349. 349.
    A.S. Sanz, S. Miret-Artés, Chem. Phys. Lett. 458, 239 (2008) ADSGoogle Scholar
  350. 350.
    R.A. Leacock, M.J. Padgett, Phys. Rev. Lett. 50, 3 (1983) MathSciNetADSGoogle Scholar
  351. 351.
    R.A. Leacock, M.J. Padgett, Phys. Rev. D 28, 2491 (1983) MathSciNetADSGoogle Scholar
  352. 352.
    P. Jordan, Z. Phys. 38, 513 (1926) ADSGoogle Scholar
  353. 353.
    P. Jordan, Z. Phys. 40, 809 (1927) MATHADSGoogle Scholar
  354. 354.
    P. Jordan, Z. Phys. 44, 1 (1927) MATHADSGoogle Scholar
  355. 355.
    P.A.M. Dirac, Proc. R. Soc. Lond. 113A, 621 (1927) ADSGoogle Scholar
  356. 356.
    P.A.M. Dirac, Phys. Z. Sowjetunion 3, 64 (1933) Google Scholar
  357. 357.
    P.A.M. Dirac, Rev. Mod. Phys. 17, 195 (1945) MathSciNetMATHADSGoogle Scholar
  358. 358.
    K. Gottfried, Proc. London Math. Soc. 23, 428 (1925) Google Scholar
  359. 359.
    G. Wentzel, Z. Phys. 38, 518 (1926) MATHADSGoogle Scholar
  360. 360.
    H.A. Kramers, Z. Phys. 39, 828 (1926) MATHADSGoogle Scholar
  361. 361.
    L. Brillouin, Compt. Rend. 183, 24 (1926) Google Scholar
  362. 362.
    E.R. Floyd, Phys. Rev. D 25, 1547 (1982) ADSGoogle Scholar
  363. 363.
    E.R. Floyd, Phys. Rev. D 26, 1339 (1982) ADSGoogle Scholar
  364. 364.
    E.R. Floyd, Phys. Rev. D 29, 1842 (1984) ADSGoogle Scholar
  365. 365.
    E.R. Floyd, Phys. Rev. D 34, 3246 (1986) ADSGoogle Scholar
  366. 366.
    E.R. Floyd, Found. Phys. Lett. 9, 489 (1996) MathSciNetGoogle Scholar
  367. 367.
    E.R. Floyd, Found. Phys. Lett. 13, 235 (2000) MathSciNetGoogle Scholar
  368. 368.
    A.E. Faraggi, M. Matone, Phys. Lett. A 249, 180 (1998) MathSciNetMATHADSGoogle Scholar
  369. 369.
    A.E. Faraggi, M. Matone, Phys. Lett. B 437, 369 (1998) ADSGoogle Scholar
  370. 370.
    A.E. Faraggi, M. Matone, Phys. Lett. B 445, 77 (1999) MathSciNetADSGoogle Scholar
  371. 371.
    A.E. Faraggi, M. Matone, Phys. Lett. B 450, 34 (1999) MathSciNetMATHADSGoogle Scholar
  372. 372.
    A.E. Faraggi, M. Matone, Int. J. Mod. Phys. A 15, 1869 (2000) MathSciNetMATHADSGoogle Scholar
  373. 373.
    M.V. John, Found. Phys. Lett. 15, 329 (2002) MathSciNetGoogle Scholar
  374. 374.
    M.V. John, Ann. Phys. 324, 220 (2009) MATHADSGoogle Scholar
  375. 375.
    M.V. John, Ann. Phys. 325, 2132 (2010) MATHADSGoogle Scholar
  376. 376.
    M.V. John, K. Mathew, Found. Phys. 43, 859 (2013) MathSciNetMATHADSGoogle Scholar
  377. 377.
    S. Dey, A. Fring, Phys. Rev. A 88, 022116 (2013) ADSGoogle Scholar
  378. 378.
    C.D. Yang, Ann. Phys. 319, 399 (2005) MATHADSGoogle Scholar
  379. 379.
    C.D. Yang, Ann. Phys. 319, 445 (2005) ADSGoogle Scholar
  380. 380.
    C.D. Yang, Int. J. Quantum Chem. 106, 1620 (2006) ADSGoogle Scholar
  381. 381.
    C.D. Yang, Chaos Solitons Fractals 30, 41 (2006) ADSGoogle Scholar
  382. 382.
    C.D. Yang, Chaos Solitons Fractals 30, 342 (2006) MathSciNetMATHADSGoogle Scholar
  383. 383.
    C.D. Yang, Ann. Phys. 321, 2876 (2006) MATHADSGoogle Scholar
  384. 384.
    C.D. Yang, Chaos Solitons Fractals 32, 274 (2007) ADSGoogle Scholar
  385. 385.
    C.D. Yang, Chaos Solitons Fractals 32, 312 (2007) MathSciNetMATHADSGoogle Scholar
  386. 386.
    C.D. Yang, Chaos Solitons Fractals 33, 1073 (2007) MathSciNetMATHADSGoogle Scholar
  387. 387.
    C.D. Yang, C.H. Wei, Chaos Solitons Fractals 33, 118 (2007) MathSciNetMATHADSGoogle Scholar
  388. 388.
    C.C. Chou, R.E. Wyatt, Phys. Rev. A 76, 012115 (2007) ADSGoogle Scholar
  389. 389.
    C.C. Chou, R.E. Wyatt, Phys. Rev. A 78, 044101 (2007) ADSGoogle Scholar
  390. 390.
    C.C. Chou, R.E. Wyatt, J. Chem. Phys. 128, 154106 (2008) ADSGoogle Scholar
  391. 391.
    C.C. Chou, R.E. Wyatt, J. Chem. Phys. 128, 234106 (2008) ADSGoogle Scholar
  392. 392.
    C.C. Chou, R.E. Wyatt, J. Chem. Phys. 129, 124113 (2008) ADSGoogle Scholar
  393. 393.
    C.C. Chou, R.E. Wyatt, J. Chem. Phys. 373, 1811 (2009) MATHGoogle Scholar
  394. 394.
    C.C. Chou, A.S. Sanz, S. Miret-Artés, R.E. Wyatt, Phys. Rev. Lett. 102, 250401 (2009) ADSGoogle Scholar
  395. 395.
    C.C. Chou, A.S. Sanz, S. Miret-Artés, R.E. Wyatt, Ann. Phys. 325, 2193 (2010) MATHADSGoogle Scholar
  396. 396.
    C.C. Chou, R.E. Wyatt, J. Chem. Phys. 132, 134102 (2010) ADSGoogle Scholar
  397. 397.
    C.C. Chou, R.E. Wyatt, J. Chem. Phys. 374, 2608 (2010) MathSciNetMATHGoogle Scholar
  398. 398.
    Y. Goldfarb, I. Degani, D.J. Tannor, J. Chem. Phys. 125, 231103 (2006) ADSGoogle Scholar
  399. 399.
    A.S. Sanz, S. Miret-Artés, J. Chem. Phys. 127, 197101 (2007) ADSGoogle Scholar
  400. 400.
    Y. Goldfarb, I. Degani, D.J. Tannor, J. Chem. Phys. 127, 197102 (2007) ADSGoogle Scholar
  401. 401.
    Y. Goldfarb, D.J. Tannor, J. Chem. Phys. 127, 161101 (2007) ADSGoogle Scholar
  402. 402.
    Y. Goldfarb, J. Schiff, D.J. Tannor, J. Chem. Phys. 111, 10416 (2007) Google Scholar
  403. 403.
    Y. Goldfarb, I. Degani, D.J. Tannor, Chem. Phys. 338, 106 (2007) ADSGoogle Scholar
  404. 404.
    N. Zamstein, D.J. Tannor, J. Chem. Phys. 140, 041105 (2014) ADSGoogle Scholar
  405. 405.
    D.J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective (University Science Books, Sausalito, 2006) Google Scholar
  406. 406.
    C.J. Trahan, K. Hughes, R.E. Wyatt, J. Chem. Phys. 118, 9911 (2003) ADSGoogle Scholar
  407. 407.
    C.C. Chou, R.E. Wyatt, J. Chem. Phys. 125, 174103 (2006) ADSGoogle Scholar
  408. 408.
    C.C. Chou, R.E. Wyatt, Phys. Rev. E 74, 066702 (2006) ADSGoogle Scholar
  409. 409.
    C.C. Chou, R.E. Wyatt, Int. J. Quantum Chem. 108, 238 (2008) ADSGoogle Scholar
  410. 410.
    J. Liu, N. Makri, Mol. Phys. 103, 1083 (2005) ADSGoogle Scholar
  411. 411.
    S. Garashchuk, Theor. Chem. Acc. 131, 1083 (2012) Google Scholar
  412. 412.
    D. Howard, in Sixty-Two Years of Uncertainty edited by A.I. Miller (Plenum Press., New York, 1990), pp. 61–111 Google Scholar
  413. 413.
    J.S. Bell, Physics 1, 195 (1964) Google Scholar
  414. 414.
    A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982) ADSGoogle Scholar
  415. 415.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976) MathSciNetMATHADSGoogle Scholar
  416. 416.
    H.P. Breuer, F. Petruccione, The theory of open quantum systems (Oxford university press, 2002) Google Scholar
  417. 417.
    D. Dürr, S. Goldstein, N. Zanghì, J. Stat. Phys. 67, 843 (1992) MATHADSGoogle Scholar
  418. 418.
    D. Bohm, Phys. Rev. 85, 180 (1952) MathSciNetADSGoogle Scholar
  419. 419.
    D.H. Kobe, J. Phys. A 40, 5155 (2007) MathSciNetMATHADSGoogle Scholar
  420. 420.
    H.R. Brown, E. Sjöqvist, G. Bacciagaluppi, Phys. Lett. A 251, 229 (1999) MathSciNetMATHADSGoogle Scholar
  421. 421.
    M.F. Pusey, J. Barrettt, T. Rudolph, Nature 8, 475 (2012) Google Scholar
  422. 422.
    D. Albert, in Bohmian mechanics and quantum theory: an appraisal, edited by J. Cushing, A. Fine, S. Goldstein (Kluwer, 1996), pp. 277–284 Google Scholar
  423. 423.
    D. Dürr, S. Goldstein, N. Zanghì, in Experimental Metaphysics – Quantum Mechanical Studies in Honor of Abner Shimony, edited by R.S. Cohen, M. Horne, J. Stachel (Kluwer Academic Publishers, Dordrecht, 1997), Vol. I, pp. 25–38 Google Scholar
  424. 424.
    L. de Broglie, Ph.D. thesis, University of Paris (1924) Google Scholar
  425. 425.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer Verlag, Berlin, 1932), english translation by: R.T. Beyer, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955) Google Scholar
  426. 426.
    B.L. van der Waerden, Sources of Quantum Mechanics (Dover Publications, New York, 1968) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Albert Benseny
    • 1
  • Guillermo Albareda
    • 2
  • Ángel S. Sanz
    • 3
  • Jordi Mompart
    • 4
  • Xavier Oriols
    • 5
  1. 1.Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
  2. 2.Departament de Química Física and Institut de Quimica Teorica i Computacional, Universitat de BarcelonaBarcelonaSpain
  3. 3.Instituto de Física Fundamental (IFF-CSIC)MadridSpain
  4. 4.Departament de Física, Universitat Autònoma de BarcelonaBellaterraSpain
  5. 5.Departament d’Enginyeria Electrònica, Universitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations