Skip to main content

Addressable parallel cavity-based quantum memory

Abstract

We elaborate theoretically a model of addressable parallel cavity-based quantum memory for light able to store multiple transverse spatial modes of the input light signal of finite duration and, at the same time, a time sequence of the signals by side illumination. Having in mind possible applications for, e.g., quantum repeaters, we reveal the addressability of our memory, that is, its handiness for the read-out on demand of a given transverse quantized signal mode and of a given signal from the time sequence. The addressability is achieved by making use of different spatial configurations of pump wave during the write-in and the readout. We also demonstrate that for the signal durations of the order of few cavity decay times, better efficiency is achieved when one excites the cavity with zero light-matter coupling and finally performs fast excitation transfer from the intracavity field to the collective spin. On the other hand, the light-matter coupling control in time, based on dynamical impedance matching, allows to store and retrieve time restricted signals of the on-demand smooth time shape.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Hammerer, A.S. Sørensen, E.S. Polzik, Rev. Mod. Phys. 82, 1041 (2010)

    Article  ADS  Google Scholar 

  2. 2.

    C. Simon et al., Eur. Phys. J. D 58, 1 (2010)

    Article  ADS  Google Scholar 

  3. 3.

    A.L. Lvovsky, B.C. Sanders, W. Tittel, Nat. Photon. 3, 706 (2009)

    Article  ADS  Google Scholar 

  4. 4.

    B. Julsgaard, J. Sherson, J. Fiurasek, J.I. Cirac, E.S. Polzik, Nature 432, 482 (2004)

    Article  ADS  Google Scholar 

  5. 5.

    M.P. Hedges, J.J. Longdell, Yongmin Li, M.J. Sellars, Nature 465, 1052 (2010)

    Article  ADS  Google Scholar 

  6. 6.

    M. Hosseini, B.M. Sparkes, G. Campbell, B.C. Buchler, P.K. Lam, Nat. Commun. 2, 174 (2011)

    Article  ADS  Google Scholar 

  7. 7.

    C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, N. Gisin, Phys. Rev. Lett. 98, 190503 (2007)

    Article  ADS  Google Scholar 

  8. 8.

    D.V. Vasilyev, I.V. Sokolov, E.S. Polzik, Phys. Rev. A 77, 020302(R) (2008)

    Article  ADS  Google Scholar 

  9. 9.

    K. Surmacz, J. Nunn, K. Reim, K.C. Lee, V.O. Lorenz, B. Sussman, I.A. Walmsley, D. Jaksch, Phys. Rev. A 78, 033806 (2008)

    Article  ADS  Google Scholar 

  10. 10.

    D.V. Vasilyev, I.V. Sokolov, E.S. Polzik, Phys. Rev. A 81, 020302(R) (2010)

    Article  ADS  Google Scholar 

  11. 11.

    D.V. Vasilyev, I.V. Sokolov, Eur. Phys. J. D 66, 294 (2012)

    Article  ADS  Google Scholar 

  12. 12.

    T. Golubeva, Yu.M. Golubev, O. Mishina, A. Bramati, J. Laurat, E. Giacobino, Eur. Phys. J. D 66, 275 (2012)

    Article  ADS  Google Scholar 

  13. 13.

    K. Tikhonov, K. Samburskaya, T. Golubeva, Yu. Golubev, Phys. Rev. A 89, 013811 (2014)

    Article  ADS  Google Scholar 

  14. 14.

    E. Zeuthen, A. Grodecka-Grad, A.S. Sørensen, Phys. Rev. A 84, 043838 (2011)

    Article  ADS  Google Scholar 

  15. 15.

    L. Veissier, A. Nicolas, L. Giner, D. Maxein, A. Sheremet, E. Giacobino, J. Laurat, Opt. Lett. 38, 712 (2013)

    Article  ADS  Google Scholar 

  16. 16.

    A. Dantan, A. Bramati, M. Pinard, Phys. Rev. A 71, 043801 (2005)

    Article  ADS  Google Scholar 

  17. 17.

    A.V. Gorshkov, A. Andre, M.D. Lukin, A.S. Sørensen, Phys. Rev. A 76, 033804 (2007)

    Article  ADS  Google Scholar 

  18. 18.

    A. Kalachev, Phys. Rev. A 78, 043812 (2008)

    Article  ADS  Google Scholar 

  19. 19.

    Q.Y. He, M.D. Reid, E. Giacobino, J. Cviklinski, P.D. Drummond, Phys. Rev. A 79, 022310 (2009)

    Article  ADS  Google Scholar 

  20. 20.

    X. Zhang, A. Kalachev, O. Kocharovskaya, Phys. Rev. A 87, 013811 (2013)

    Article  ADS  Google Scholar 

  21. 21.

    M. Afzelius, C. Simon, Phys. Rev. A 82, 022310 (2010)

    Article  ADS  Google Scholar 

  22. 22.

    S.A. Moiseev, S.N. Andrianov, F.F. Gubaidullin, Phys. Rev. A 82, 022311 (2010)

    Article  ADS  Google Scholar 

  23. 23.

    D.S. Goldman, Information Theory (Prentice-Hall, New York, 1953)

  24. 24.

    B. Schumacher, M.A. Nielsen, Phys. Rev. A 54, 2629 (1996)

    MathSciNet  Article  ADS  Google Scholar 

  25. 25.

    S. Lloyd, Phys. Rev. A 55, 1613 (1997)

    MathSciNet  Article  ADS  Google Scholar 

  26. 26.

    A.N. Vetlugin, I.V. Sokolov, Opt. Spectrosc. 115, 875 (2013)

    Article  ADS  Google Scholar 

  27. 27.

    J. Dilley, P. Nisbet, B.W. Shore, A. Kuhn, Phys. Rev. A 85, 023834 (2012)

    Article  ADS  Google Scholar 

  28. 28.

    N.N. Rosanov, Spatial hysteresis and optical patterns (Springer, Berlin Heidelberg, New-York, 2002)

  29. 29.

    Quantum Imaging, edited by M. Kolobov (Springer Science+Buisiness Media LLC, 2007)

  30. 30.

    A.E. Siegman, Lasers (University Science Books, Ca, 1986)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivan V. Sokolov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vetlugin, A.N., Sokolov, I.V. Addressable parallel cavity-based quantum memory. Eur. Phys. J. D 68, 269 (2014). https://doi.org/10.1140/epjd/e2014-50185-4

Download citation

Keywords

  • Quantum Optics