Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Addressable parallel cavity-based quantum memory

Abstract

We elaborate theoretically a model of addressable parallel cavity-based quantum memory for light able to store multiple transverse spatial modes of the input light signal of finite duration and, at the same time, a time sequence of the signals by side illumination. Having in mind possible applications for, e.g., quantum repeaters, we reveal the addressability of our memory, that is, its handiness for the read-out on demand of a given transverse quantized signal mode and of a given signal from the time sequence. The addressability is achieved by making use of different spatial configurations of pump wave during the write-in and the readout. We also demonstrate that for the signal durations of the order of few cavity decay times, better efficiency is achieved when one excites the cavity with zero light-matter coupling and finally performs fast excitation transfer from the intracavity field to the collective spin. On the other hand, the light-matter coupling control in time, based on dynamical impedance matching, allows to store and retrieve time restricted signals of the on-demand smooth time shape.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K. Hammerer, A.S. Sørensen, E.S. Polzik, Rev. Mod. Phys. 82, 1041 (2010)

  2. 2.

    C. Simon et al., Eur. Phys. J. D 58, 1 (2010)

  3. 3.

    A.L. Lvovsky, B.C. Sanders, W. Tittel, Nat. Photon. 3, 706 (2009)

  4. 4.

    B. Julsgaard, J. Sherson, J. Fiurasek, J.I. Cirac, E.S. Polzik, Nature 432, 482 (2004)

  5. 5.

    M.P. Hedges, J.J. Longdell, Yongmin Li, M.J. Sellars, Nature 465, 1052 (2010)

  6. 6.

    M. Hosseini, B.M. Sparkes, G. Campbell, B.C. Buchler, P.K. Lam, Nat. Commun. 2, 174 (2011)

  7. 7.

    C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, N. Gisin, Phys. Rev. Lett. 98, 190503 (2007)

  8. 8.

    D.V. Vasilyev, I.V. Sokolov, E.S. Polzik, Phys. Rev. A 77, 020302(R) (2008)

  9. 9.

    K. Surmacz, J. Nunn, K. Reim, K.C. Lee, V.O. Lorenz, B. Sussman, I.A. Walmsley, D. Jaksch, Phys. Rev. A 78, 033806 (2008)

  10. 10.

    D.V. Vasilyev, I.V. Sokolov, E.S. Polzik, Phys. Rev. A 81, 020302(R) (2010)

  11. 11.

    D.V. Vasilyev, I.V. Sokolov, Eur. Phys. J. D 66, 294 (2012)

  12. 12.

    T. Golubeva, Yu.M. Golubev, O. Mishina, A. Bramati, J. Laurat, E. Giacobino, Eur. Phys. J. D 66, 275 (2012)

  13. 13.

    K. Tikhonov, K. Samburskaya, T. Golubeva, Yu. Golubev, Phys. Rev. A 89, 013811 (2014)

  14. 14.

    E. Zeuthen, A. Grodecka-Grad, A.S. Sørensen, Phys. Rev. A 84, 043838 (2011)

  15. 15.

    L. Veissier, A. Nicolas, L. Giner, D. Maxein, A. Sheremet, E. Giacobino, J. Laurat, Opt. Lett. 38, 712 (2013)

  16. 16.

    A. Dantan, A. Bramati, M. Pinard, Phys. Rev. A 71, 043801 (2005)

  17. 17.

    A.V. Gorshkov, A. Andre, M.D. Lukin, A.S. Sørensen, Phys. Rev. A 76, 033804 (2007)

  18. 18.

    A. Kalachev, Phys. Rev. A 78, 043812 (2008)

  19. 19.

    Q.Y. He, M.D. Reid, E. Giacobino, J. Cviklinski, P.D. Drummond, Phys. Rev. A 79, 022310 (2009)

  20. 20.

    X. Zhang, A. Kalachev, O. Kocharovskaya, Phys. Rev. A 87, 013811 (2013)

  21. 21.

    M. Afzelius, C. Simon, Phys. Rev. A 82, 022310 (2010)

  22. 22.

    S.A. Moiseev, S.N. Andrianov, F.F. Gubaidullin, Phys. Rev. A 82, 022311 (2010)

  23. 23.

    D.S. Goldman, Information Theory (Prentice-Hall, New York, 1953)

  24. 24.

    B. Schumacher, M.A. Nielsen, Phys. Rev. A 54, 2629 (1996)

  25. 25.

    S. Lloyd, Phys. Rev. A 55, 1613 (1997)

  26. 26.

    A.N. Vetlugin, I.V. Sokolov, Opt. Spectrosc. 115, 875 (2013)

  27. 27.

    J. Dilley, P. Nisbet, B.W. Shore, A. Kuhn, Phys. Rev. A 85, 023834 (2012)

  28. 28.

    N.N. Rosanov, Spatial hysteresis and optical patterns (Springer, Berlin Heidelberg, New-York, 2002)

  29. 29.

    Quantum Imaging, edited by M. Kolobov (Springer Science+Buisiness Media LLC, 2007)

  30. 30.

    A.E. Siegman, Lasers (University Science Books, Ca, 1986)

Download references

Author information

Correspondence to Ivan V. Sokolov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vetlugin, A.N., Sokolov, I.V. Addressable parallel cavity-based quantum memory. Eur. Phys. J. D 68, 269 (2014). https://doi.org/10.1140/epjd/e2014-50185-4

Download citation

Keywords

  • Quantum Optics