Skip to main content
Log in

Quantitative thermodynamic model for globular protein folding

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We present a statistical mechanics formalism for theoretical description of the process of protein folding ↔ unfolding transition in water environment. The formalism is based on the construction of the partition function of a protein obeying two-stage-like folding kinetics. Using the statistical mechanics model of solvation of hydrophobic hydrocarbons we obtain the partition function of infinitely diluted solution of proteins in water environment. The calculated dependencies of the protein heat capacities upon temperature are compared with the corresponding results of experimental measurements for staphylococcal nuclease and metmyoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Surdutovich, A.V. Solov’yov, J. Phys.: Conf. Ser. 373, 012001 (2012)

    ADS  Google Scholar 

  2. I. Baccarelli, F.A. Gianturco, E. Scifoni, A.V. Solov’yov, E. Surdutovich, Eur. Phys. J. D 60, 1 (2010)

    Article  ADS  Google Scholar 

  3. E. Surdutovich, A.V. Yakubovich, A.V. Solov’yov, Sci. Rep. 3, 1289 (2013)

    Article  ADS  Google Scholar 

  4. V. Muñoz, Annu. Rev. Biophys. Biomol. Struct. 36, 395 (2007)

    Article  Google Scholar 

  5. K.A. Dill, S.B. Ozkan, M.S. Shell, T.R. Weikl, Annu. Rev. Biophys. 37, 289 (2008)

    Article  ADS  Google Scholar 

  6. J.N. Onuchic, P.G. Wolynes, Curr. Opt. Struct. Biol. 14, 70 (2004)

    Article  Google Scholar 

  7. E. Shakhnovich, Chem. Rev. 106, 1559 (2006)

    Article  Google Scholar 

  8. N.V. Prabhu, K.A. Sharp, Chem. Rev. 106, 1616 (2006)

    Article  Google Scholar 

  9. A.V. Yakubovich, I.A. Solov’yov, A.V. Solov’yov, W. Greiner, Eur. Phys. J. D 46, 215 (2007)

    Article  Google Scholar 

  10. A.V. Yakubovich, I.A. Solov’yov, A.V. Solov’yov, W. Greiner, Europhys. News 38, 10 (2007)

    Google Scholar 

  11. I.A. Solov’yov, A.V. Yakubovich, A.V. Solov’yov, W. Greiner, Eur. Phys. J. D 46, 227 (2008)

    Article  ADS  Google Scholar 

  12. A.V. Yakubovich, I.A. Solov’yov, A.V. Solov’yov, W. Greiner, Eur. Phys. J. D 40, 363 (2006)

    Article  ADS  Google Scholar 

  13. A.V. Yakubovich, I.A. Solov’yov, A.V. Solov’yov, W. Greiner, Eur. Phys. J. D 39, 23 (2006)

    Article  ADS  Google Scholar 

  14. A.V. Yakubovich, I.A. Solov’yov, A.V. Solov’yov, W. Greiner, Khimicheskaya Fizika [Chem. Phys.] 25, 11 (2006) (in Russian)

    Google Scholar 

  15. A.V. Yakubovich, I.A. Solov’yov, A.V. Solov’yov, W. Greiner, Eur. Phys. J. D 51, 25 (2009)

    Article  ADS  Google Scholar 

  16. I.A. Solov’yov, A.V. Yakubovich, A.V. Solov’yov, W. Greiner, J. Exp. Theor. Phys. 103, 463 (2006)

    Article  ADS  Google Scholar 

  17. I.A. Solov’yov, A.V. Yakubovich, A.V. Solov’yov, W. Greiner, Phys. Rev. E 73, 021916 (2006)

    Article  ADS  Google Scholar 

  18. I.A. Solov’yov, A.V. Yakubovich, A.V. Solov’yov, W. Greiner, J. Exp. Theor. Phys. 102, 314 (2006)

    Article  ADS  Google Scholar 

  19. A.V. Yakubovich, A.V. Solov’yov, W. Greiner, Int. J. Quantum Chem. 110, 257 (2010)

    Article  ADS  Google Scholar 

  20. A.V. Yakubovich, A.V. Solov’yov, W. Greiner, AIP Conf. Proc. 1197, 186 (2009)

    Article  ADS  Google Scholar 

  21. A.D. Robertson, K.P. Murphy, Chem. Phys. 97, 1251 (1997)

    Google Scholar 

  22. P. Privalov, G. Makhatadze, Adv. Protein Chem. 47, 307 (1995)

    Article  Google Scholar 

  23. G. Makhatadze, P. Privalov, J. Mol. Biol. 232, 639 (1993)

    Article  Google Scholar 

  24. P.J. Flory, Statistical Mechanics of Chain Molecules (Wiley, New York, 1969)

  25. K. Murphy, E. Freire, Adv. Protein Chem. 43, 313 (1992)

    Article  Google Scholar 

  26. N. Go, Annu. Rev. Biophys. Bioeng. 12, 183 (1983)

    Article  Google Scholar 

  27. N. Go, H. Abe, Biopolymers 20, 991 (1981)

    Article  Google Scholar 

  28. G. Nemethy, H. Scheraga, J. Chem. Phys. 36, 3382 (1962)

    Article  ADS  Google Scholar 

  29. P. Lewis, F. Momany, H. Scheraga, Proc. Natl. Acad. Sci. USA 68, 2293 (1971)

    Article  ADS  Google Scholar 

  30. P. Kim, R. Baldwin, Annu. Rev. Biochem. 59, 631 (1990)

    Article  ADS  Google Scholar 

  31. R.L. Baldwin, Proc. Natl. Acad. Sci. USA 83, 8069 (1986)

    Article  ADS  Google Scholar 

  32. S. Somani, B.J. Killian, M.K. Gilson, J. Chem. Phys. 130, 134102 (2009)

    Article  ADS  Google Scholar 

  33. S. Somani, M.K. Gilson, J. Chem. Phys. 134, 134107 (2011)

    Article  ADS  Google Scholar 

  34. E. Henry, W. Eaton, Chem. Phys. 307, 163 (2004)

    Article  ADS  Google Scholar 

  35. S. Kumar, C.-J. Tsai, R. Nussinov, Biol. Cyber. 41, 5359 (2002)

    Google Scholar 

  36. L. Pratt, Annu. Rev. Phys. Chem. 53, 409 (2002)

    Article  ADS  Google Scholar 

  37. L.R. Pratt, A. Pohorille, Chem. Rev. 102, 2671 (2002)

    Article  Google Scholar 

  38. K. Murphy, P. Privalov, S. Gill, Science 247, 559 (1990)

    Article  ADS  Google Scholar 

  39. K. Murphy, S. Gill, J. Mol. Biol. 222, 699 (1991)

    Article  Google Scholar 

  40. F. Avbelj, R.L. Baldwin, Proc. Natl. Acad. Sci. USA 99, 1309 (2002)

    Article  ADS  Google Scholar 

  41. T. Lazaridis, M. Karplus, Biopolymers 100, 367 (2003)

    Google Scholar 

  42. H. Kaya, H. Chan, J. Mol. Biol. 326, 911 (2003)

    Article  Google Scholar 

  43. J.H. Griffith, H. Scheraga, J. Mol. Struct. 682, 97 (2004)

    Article  Google Scholar 

  44. O. Collet, J. Chem. Phys. 134, 085107 (2011)

    Article  ADS  Google Scholar 

  45. A. Bakk, J.S. Hye, A. Hansen, Biophys. J. 82, 713719 (2002)

    Article  Google Scholar 

  46. Y. Griko, P. Privalov, J. Aturtevant, S. Venyaminov, Proc. Natl. Acad. Sci. USA 85, 3343 (1988)

    Article  ADS  Google Scholar 

  47. P. Privalov, J. Chem. Thermodyn. 29, 447 (1997)

    Article  Google Scholar 

  48. W. Scott, W. van Gunsteren, in Methods and Techniques in Computational Chemistry: METECC-95, edited by E. Clementi, G. Corongiu (STEF, Cagliari, Italy, 1995), pp. 397–434

  49. W. Cornell et al., J. Am. Chem. Soc. 117, 5179 (1995)

    Article  Google Scholar 

  50. A. MacKerell et al., J. Phys. Chem. B 102, 3586 (1998)

    Article  Google Scholar 

  51. R.M. Levy, M. Karplus, J. Kushick, D. Perahia, Macromolecules 17, 1370 (1984)

    Article  ADS  Google Scholar 

  52. S. Krimm, J. Bandekar, Biopolymers 19, 1 (1980)

    Article  Google Scholar 

  53. R. Pappu, R. Srinivasan, Proc. Natl. Acad. Sci. USA 97, 12565 (2000)

    Article  ADS  Google Scholar 

  54. D. Yoshioka, Statistical Physics. An introduction (Springer-Verlag, Berlin, Heidelberg, 2007)

  55. M. Cubrovic, O. Obolensky, A.V. Solov’yov, Eur. Phys. J. D 51, 41 (2009)

    Article  ADS  Google Scholar 

  56. A. Finkelstein, O. Ptitsyn, Protein Physics. A Course of Lectures (Elsevier Books, Oxford, 2002)

  57. F.A. Cotton, J. Edward, E. Hazen, M.J. Legg, Proc. Natl. Acad. Sci. USA 76, 2551 (1979)

    Article  ADS  Google Scholar 

  58. J.C. Phillips et al., J. Comput. Chem. 26, 1781 (2005)

    Article  Google Scholar 

  59. H.-X. Zhou, Biophys. J. 83, 2981 (2002)

    Article  ADS  Google Scholar 

  60. J.P. Collman, R. Boulatov, C.J. Sunderland, L. Fu, Chem. Rev. 104, 561 (2004)

    Article  Google Scholar 

  61. D. Shortle, M.S. Ackerman, Science 293, 487 (2001)

    Article  Google Scholar 

  62. J. Chen, Z. Lu, J. Sakon, W. Stites, J. Mol. Biol. 303, 125 (2000)

    Article  Google Scholar 

  63. S. Evans, G. Brayer, J. Mol. Biol. 213, 885 (1990)

    Article  Google Scholar 

  64. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    Article  Google Scholar 

  65. G. Brady, K.A. Sharp, Curr. Opin. Struct. Biol. 7, 215 (1997)

    Article  Google Scholar 

  66. T. Fisher, A. Oberhauser, M. Carrion-Vazquez, P.E. Marszalek, J.M. Fernandez, Trends Biochem. Sci. 24, 379 (1999)

    Article  Google Scholar 

  67. I. Jensen, J. Phys. A 37, 5503 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. W. Russel, D. Saville, W. Schowalter, Colloidal Dispersions (Cambridge University Press, 1989)

  69. B. Mallik, T.L.A. Masunov, J. Comput. Chem. 23, 1090 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Yakubovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakubovich, A., Solov’yov, A. Quantitative thermodynamic model for globular protein folding. Eur. Phys. J. D 68, 145 (2014). https://doi.org/10.1140/epjd/e2014-50097-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50097-3

Keywords

Navigation