Coherent XUV generation driven by sharp metal tips photoemission

  • Marcelo Ciappina
  • Jose Antonio Pérez-Hernández
  • Tahir Shaaran
  • Maciej Lewenstein
Regular Article
Part of the following topical collections:
  1. Topical issue: X-ray Generation from Ultrafast Lasers

Abstract

It was already experimentally demonstrated that high-energy electrons can be generated using metal nanotips as active non-linear media. In addition, it has been theoretically proven that the high-energy tail of the photoemitted electrons is intrinsically linked to the so-called recollision phenomenon. Through this recollision process it is also possible to convert the energy gained by the laser-emitted electron in the continuum in a coherent XUV photon. This means the emission of harmonic radiation appears to be feasible, although it has not been experimentally demonstrated hitherto. In this paper, we employ a quantum mechanical approach to model the electron dipole moment including both the laser experimental conditions and the bulk matter properties in order to predict it is possible to generate coherent UV and XUV radiation using metal nanotips as sources. Our quantum mechanical results are fully supported by their classical counterparts.

References

  1. 1.
    A. McPherson, G. Gibson, H. Jara, U. Johann, T.S. Luk, I.A. McIntyre, K. Boyer, C.K. Rhodes, J. Opt. Soc. Am. B 4, 595 (1987)CrossRefADSGoogle Scholar
  2. 2.
    A. L’Huillier, K.J. Schafer, K.C. Kulander, J. Phys. B 24, 3315 (1991)CrossRefADSGoogle Scholar
  3. 3.
    P. Antoine, A. L’Huillier, M. Lewenstein, Phys. Rev. Lett. 77, 1234 (1996)CrossRefADSGoogle Scholar
  4. 4.
    A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Nature 427, 817 (2004)CrossRefADSGoogle Scholar
  5. 5.
    S.H. Chew et al., Appl. Phys. Lett. 100, 051904 (2012)CrossRefADSGoogle Scholar
  6. 6.
    M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, U. Kleineberg, New J. Phys. 9, 243 (2007)CrossRefADSGoogle Scholar
  7. 7.
    M. Krebs, S. Hädrich, S. Demmler, J. Rothhardt, A. Zaïr, L. Chipperfield, J. Limpert, A. Tünnermann, Nat. Photon. 7, 555 (2013)CrossRefADSGoogle Scholar
  8. 8.
    M. Lein, J. Phys. B 43, R135 (2007)CrossRefADSGoogle Scholar
  9. 9.
    S. Baker, J.S. Robinson, C.A. Haworth, H. Teng, R.A. Smith, C.C. Chirilă, M. Lein, J.G. Tisch, J.P. Marangos, Science 312, 424 (2006)CrossRefADSGoogle Scholar
  10. 10.
    S. Haessler et al., Nat. Phys. 6, 200 (2010)CrossRefGoogle Scholar
  11. 11.
    O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, M.Y. Ivanov, Proc. Natl. Acad. Sci. USA 106, 16556 (2009)CrossRefGoogle Scholar
  12. 12.
    O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, M.Y. Ivanov, Nature (London) 460, 972 (2009)CrossRefADSGoogle Scholar
  13. 13.
    Y. Mairesse et al., Science 302, 1540 (2003)CrossRefADSGoogle Scholar
  14. 14.
    E.P. Power, A.M. March, F. Catoire, E. Sistrun, K. Krushelnick, P. Agostini, L.F. DiMauro, Nat. Photon. 4, 352 (2010)CrossRefADSGoogle Scholar
  15. 15.
    M. Krüger, M. Schenk, P. Hommelhoff, Nature 475, 78 (2011)CrossRefGoogle Scholar
  16. 16.
    S. Zherebtsov et al., Nat. Phys. 7, 656 (2011)CrossRefGoogle Scholar
  17. 17.
    C. Hutchison, R.A. Ganeev, T. Witting, F. Frank, W.A. Okell, J.W.G. Tisch, J.P. Marangos, Opt. Lett. 37, 2064 (2012)CrossRefADSGoogle Scholar
  18. 18.
    R.A. Ganeev et al., Phys. Rev. A 85, 015807 (2012)CrossRefADSGoogle Scholar
  19. 19.
    M. Krüger, M. Schenk, M. Förster, P. Hommelhoff, J. Phys. B 45, 074006 (2012)CrossRefADSGoogle Scholar
  20. 20.
    M. Schenk, M. Krüger, P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010)CrossRefADSGoogle Scholar
  21. 21.
    G. Herink, D.R. Solli, M. Gulde, C. Ropers, Nature 483, 190 (2012)CrossRefADSGoogle Scholar
  22. 22.
    S.V. Yalunin, M. Gulde, C. Ropers, Phys. Rev. B 84, 195426 (2011)CrossRefADSGoogle Scholar
  23. 23.
    M. Krüger, M. Schenk, P. Hommelhoff, G. Watcher, C. Lemell, J. Burgdörfer, New J. Phys. 14, 085019 (2012)CrossRefADSGoogle Scholar
  24. 24.
    G. Watcher, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, Phys. Rev. B 86, 085019 (2012)Google Scholar
  25. 25.
    S.V. Yalunin, G. Herink, D.R. Solli, M. Krüger, P. Hommelhoff, M. Diehn, A. Munk, C. Ropers, Ann. Phys. (Berlin) 525, L12 (2013)CrossRefADSGoogle Scholar
  26. 26.
    S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L.F. DiMauro, D.A. Reis, Nat. Phys. 7, 138 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Ghimire, A.D. DiChiara, E. Sistrunk, G. Ndabashimiye, U.B. Szafruga, A. Mohammad, P. Agostini, L.F. DiMauro, D.A. Reis, Phys. Rev. A 85, 043836 (2012)CrossRefADSGoogle Scholar
  28. 28.
    L. Plaja, L. Roso-Franco, Phys. Rev. B 45, 8334 (1992)CrossRefADSGoogle Scholar
  29. 29.
    F.H.M. Faisal, J.K. Kamiński, E. Saczuk, Phys. Rev. A 72, 023412 (2005)CrossRefADSGoogle Scholar
  30. 30.
    S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, Nature 453, 757 (2008)CrossRefADSGoogle Scholar
  31. 31.
    P. Mühlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607 (2005)CrossRefADSGoogle Scholar
  32. 32.
    P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Phys. Rev. Lett. 94, 017402 (2005)CrossRefADSGoogle Scholar
  33. 33.
    A. Husakou, S.-J. Im, J. Herrmann, Phys. Rev. A 83, 043839 (2011)CrossRefADSGoogle Scholar
  34. 34.
    I. Yavuz, E.A. Bleda, Z. Altun, T. Topcu, Phys. Rev. A 85, 013416 (2012)CrossRefADSGoogle Scholar
  35. 35.
    M.F. Ciappina, J. Biegert, R. Quidant, M. Lewenstein, Phys. Rev. A 85, 033828 (2012)CrossRefADSGoogle Scholar
  36. 36.
    T. Shaaran, M.F. Ciappina, M. Lewenstein, Phys. Rev. A 86, 023408 (2012)CrossRefADSGoogle Scholar
  37. 37.
    M.F. Ciappina, S.S. Aćimović, T. Shaaran, J. Biegert, R. Quidant, M. Lewenstein, Opt. Express 20, 26261 (2012)CrossRefADSGoogle Scholar
  38. 38.
    T. Shaaran, M.F. Ciappina, M. Lewenstein, Ann. Phys. (Berlin) 525, 97 (2013)CrossRefMATHADSGoogle Scholar
  39. 39.
    B. Fetić, K. Kalajdžić, D.B. Milošević, Ann. Phys. (Berlin) 525, 107 (2013)CrossRefMATHADSGoogle Scholar
  40. 40.
    J.A. Pérez-Hernández, M.F. Ciappina, M. Lewenstein, L. Roso, A. Zaïr, Phys. Rev. Lett. 110, 053001 (2013)CrossRefADSGoogle Scholar
  41. 41.
    I. Yavuz, Phys. Rev. A 87, 053815 (2013)CrossRefADSGoogle Scholar
  42. 42.
    J. Luo, Y. Li, Z. Wang, Q. Zhang, P. Lu, J. Phys. B 46, 145602 (2013)CrossRefADSGoogle Scholar
  43. 43.
    L. Feng, M. Yuan, T. Chu, Phys. Plasmas 20, 122307 (2013)CrossRefADSGoogle Scholar
  44. 44.
    M. Sivis, M. Duwe, B. Abel, C. Ropers, Nature 485, E1 (2012)CrossRefADSGoogle Scholar
  45. 45.
    S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, Nature 485, E2 (2012)CrossRefGoogle Scholar
  46. 46.
    M. Sivis, M. Duwe, B. Abel, C. Ropers, Nat. Phys. 9, 304 (2013)CrossRefGoogle Scholar
  47. 47.
    F. Süßmann, M.F. Kling, Proc. SPIE 8096, 80961C (2011)CrossRefGoogle Scholar
  48. 48.
    F. Süßmann, M.F. Kling, Phys. Rev. B 84, 121406(R) (2011)CrossRefADSGoogle Scholar
  49. 49.
    Y.-Y. Yang et al., Opt. Express 21, 2195 (2013)CrossRefADSGoogle Scholar
  50. 50.
    P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M.A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006)CrossRefADSGoogle Scholar
  51. 51.
    P. Hommelhoff, C. Kealhofer, M.A. Kasevich, Phys. Rev. Lett. 97, 247402 (2006)CrossRefADSGoogle Scholar
  52. 52.
    C. Ropers, D.R. Solli, C.P. Schulz, C. Lienau, T. Elsaesser, Phys. Rev. Lett. 98, 043907 (2007)CrossRefADSGoogle Scholar
  53. 53.
    B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, H. Batelaan, New J. Phys. 9, 142 (2007)CrossRefADSGoogle Scholar
  54. 54.
    H. Yanagisawa, C. Hafner, P. Doná, M. Klöckner, D. Leuenberger, T. Greber, M. Hengsberger, J. Osterwalder, Phys. Rev. Lett. 103, 257603 (2009)CrossRefADSGoogle Scholar
  55. 55.
    R. Bormann, M. Gulde, A. Weismann, S.V. Yalunin, C. Ropers, Phys. Rev. Lett. 105, 147601 (2010)CrossRefADSGoogle Scholar
  56. 56.
    D.J. Park, B. Piglosiewicz, S. Schmidt, H. Kollmann, M. Mascheck, C. Lienau, Phys. Rev. Lett. 109, 244803 (2012)CrossRefADSGoogle Scholar
  57. 57.
    M.F. Ciappina, J.A. Pérez-Hernández, T. Shaaran, M. Lewenstein, M. Krüger, P. Hommelhoff, Phys. Rev. A 89, 013409 (2014)CrossRefADSGoogle Scholar
  58. 58.
    M. Protopapas, C.H. Keitel, P.L. Knight, Rep. Prog. Phys. 60, 389 (1997)CrossRefADSGoogle Scholar
  59. 59.
    K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 78, 638 (1997)CrossRefADSGoogle Scholar
  60. 60.
    M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)CrossRefADSGoogle Scholar
  61. 61.
    P.B. Corkum, Phys. Rev. Lett 71, 1994 (1993)CrossRefADSGoogle Scholar
  62. 62.
    M.F. Ciappina, J.A. Pérez-Hernández, M. Lewenstein, Comput. Phys. Commun. 185, 398 (2014)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marcelo Ciappina
    • 1
  • Jose Antonio Pérez-Hernández
    • 2
  • Tahir Shaaran
    • 3
  • Maciej Lewenstein
    • 4
    • 5
  1. 1.Department of PhysicsAuburn UniversityAuburnUSA
  2. 2.Centro de Láseres Pulsados (CLPU)Villamayor, SalamancaSpain
  3. 3.IRAMIS, Service des Photons, Atomes et MoléculesCEA-SaclayGif-sur-YvetteFrance
  4. 4.ICFO-Institut de Ciències FotòniquesMediterranean Technology ParkCastelldefels (Barcelona)Spain
  5. 5.ICREA-Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain

Personalised recommendations