Skip to main content
Log in

Structural, electronic and optical properties of 7-atom Ag-Cu nanoclusters from density functional theory

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The structures and electronic properties of 7-atom silver and copper bimetallic clusters are systematically investigated by density functional theory (DFT) in the theoretical frame of the generalised gradient approximation (GGA) exchange-correlation functional. Optical absorption, Raman spectra, as well as vibrational spectra are calculated by DFT/GGA and semi-core pseudopotentials. The lowest-energy stable motifs are primarily related to the quantity of Cu-Cu bonds and Ag-Cu bonds. The Ag5Cu2 2-I with D 5h symmetry cluster is the lowest energy cluster in the family of the 7-atom Ag-Cu nanoclusters, but has the lowest electronic stability. The Ag5Cu2 2-I, Ag4Cu3 3-I and Ag3Cu4 4-I clusters with mixed motifs indicate that silver and copper may be miscible on the nanoscale but not in bulk. Overall, with increasing Cu atoms, for the lowest energy nanoclusters, blue-shift of the maximum absorption peaks presents in the UV-Vis wavelength range, the intensities of the maximum peak of the Raman spectra weaken, the Cu atom(s) introduced make the vibrational spectra complex, and the intensities of the vibrational spectra strengthen. The calculated vibrational and Raman spectroscopy of 7-atom Ag-Cu clusters may be helpful in determining the size and structure of the experimental cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.K. Darbha, A. Ray, P.C. Ray, ACS Nano 1, 208 (2007)

    Article  Google Scholar 

  2. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature 382, 607 (1996)

    Article  ADS  Google Scholar 

  3. M.L. Brongersma, J.W. Hartman, H.A. Atwater, Phys. Rev. B 62, 16356 (2000)

    Article  ADS  Google Scholar 

  4. M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg, Opt. Lett. 23, 1331 (1998)

    Article  ADS  Google Scholar 

  5. L.N. Lewis, Chem. Rev. 93, 2693 (1993)

    Article  Google Scholar 

  6. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  7. J. Jellinek, Faraday Discuss. 138, 11 (2008)

    Article  ADS  Google Scholar 

  8. F. Chen, R.L. Johnston, Acta Mater. 56, 2374 (2008)

    Article  Google Scholar 

  9. F.Y. Chen, R.L. Johnston, Appl. Phys. Lett. 90, 153123 (2007)

    Article  ADS  Google Scholar 

  10. S. Núñez, R.L. Johnston, J. Phys. Chem. C 114, 13255 (2010)

    Article  Google Scholar 

  11. Z.Y. Jiang, K.H. Lee, S.T. Li, S.Y. Chu, Phys. Rev. B 73, 235423 (2006)

    Article  ADS  Google Scholar 

  12. D.A. Kilimis, D.G. Papageorgiou, Eur. Phys. J. D 56, 189 (2010)

    Article  ADS  Google Scholar 

  13. R. Ferrando, A. Fortunelli, R.L. Johnston, Phys. Chem. Chem. Phys. 10, 640 (2008)

    Article  Google Scholar 

  14. R. Ferrando, A. Fortunelli, G. Rossi, Phys. Rev. B 72, 085449 (2005)

    Article  ADS  Google Scholar 

  15. A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B.C. Curley, L.D. Lloyd, G.M. Tarbuck, R.L. Johnston, J. Chem. Phys. 122, 194308 (2005)

    Article  ADS  Google Scholar 

  16. G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, R. Ferrando, Phys. Rev. Lett. 93, 105503 (2004)

    Article  ADS  Google Scholar 

  17. G. Barcaro, A. Fortunelli, G. Rossi, F. Nita, R. Ferrando, J. Phys. Chem. B 110, 23197 (2006)

    Article  Google Scholar 

  18. M. Molayem, V.G. Grigoryan, M. Springborg, J. Phys. Chem. C 115, 22148 (2011)

    Article  Google Scholar 

  19. H. Yildirim, A. Kara, T.S. Rahman, J. Phys. Chem. C 116, 281 (2012)

    Article  Google Scholar 

  20. D. Bochicchio, R. Ferrando, Nano Lett. 10, 4211 (2010)

    Article  ADS  Google Scholar 

  21. D. Bochicchio, R. Ferrando, Eur. Phys. J. D 66, 115 (2012)

    Article  ADS  Google Scholar 

  22. H.C. Weissker, C. Mottet, Phys. Rev. B 84, 165443 (2011)

    Article  ADS  Google Scholar 

  23. B. Delley, J. Chem. Phys. 92, 508 (1990)

    Article  ADS  Google Scholar 

  24. B. Delley, J. Chem. Phys. 113, 7756 (2000)

    Article  ADS  Google Scholar 

  25. K. Shin, D.H. Kim, S.C. Yeo, H.M. Lee, Catal. Today 185, 94 (2012)

    Article  Google Scholar 

  26. C.J. Heard, R.L. Johnston, Eur. Phys. J. D 67, 34 (2013)

    Article  ADS  Google Scholar 

  27. W.Q. Ma, F.Y. Chen, J. Alloys Compd. 541, 79 (2012)

    Article  Google Scholar 

  28. Y. Rao, Y.M. Lei, X.Y. Cui, Z.W. Liu, F.Y. Chen, J. Alloys Compd. 55, 50 (2013)

    Article  Google Scholar 

  29. W. Li, F. Chen, Comput. Mater. Sci. 81, 587 (2014)

    Article  Google Scholar 

  30. W.Y. Li, F.Y. Chen, J. Nanopart. Res. 15, 1809 (2013)

    Article  MATH  Google Scholar 

  31. W. Li, F. Chen, Appl. Phys. A 113, 543 (2013)

    Article  ADS  Google Scholar 

  32. G.A. Bishea, N. Marak, M.D. Morse, J. Chem. Phys. 95, 5618 (1991)

    Article  ADS  Google Scholar 

  33. G.A. Bishea, C.A. Arrington, J.M. Behm, M.D. Morse, J. Chem. Phys. 95, 8765 (1991)

    Article  ADS  Google Scholar 

  34. M.A. Cheeseman, J.R. Eyler, J. Phys. Chem. 96, 1082 (1992)

    Article  Google Scholar 

  35. M. Cazayous, C. Langlois, T. Oikawa, C. Ricolleau, A. Sacuto, Phys. Rev. B 73 (2006)

  36. C. Langlois, D. Alloyeau, Y. Le Bouar, A. Loiseau, T. Oikawa, C. Mottet, C. Ricolleau, Faraday Discuss. 138, 375 (2008)

    Article  ADS  Google Scholar 

  37. C. Langlois, Z.L. Li, J. Yuan, D. Alloyeau, J. Nelayah, D. Bochicchio, R. Ferrando, C. Ricolleau, Nanoscale 4, 3381 (2012)

    Article  ADS  Google Scholar 

  38. M. Tsuji, S. Hikino, R. Tanabe, M. Matsunaga, Y. Sano, CrystEngComm 12, 3900 (2010)

    Article  Google Scholar 

  39. B. Delley, Phys. Rev. B 66, 155125 (2002)

    Article  ADS  Google Scholar 

  40. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  41. B. Delley, J. Phys.: Condens. Matter 22, 384208 (2010)

    ADS  Google Scholar 

  42. P.S. Bechthold, U. Kettler, W. Krasser, Surf. Sci. 156, 875 (1985)

    Article  ADS  Google Scholar 

  43. S. Fedrigo, W. Harbich, J. Buttet, Phys. Rev. B 47, 10706 (1993)

    Article  ADS  Google Scholar 

  44. J.C. Idrobo, S. Ogut, J. Jellinek, Phys. Rev. B 72, 085445 (2005)

    Article  ADS  Google Scholar 

  45. S. Öğüt, J.C. Idrobo, J. Jellinek, J. Wang, J. Cluster Sci. 17, 609 (2006)

    Article  Google Scholar 

  46. M.L. Tiago, J.C. Idrobo, S. Ogut, J. Jellinek, J.R. Chelikowsky, Phys. Rev. B 79, 155419 (2009)

    Article  ADS  Google Scholar 

  47. K. Yabana, G.F. Bertsch, Phys. Rev. A 60, 3809 (1999)

    Article  ADS  Google Scholar 

  48. J. Yan, S.W. Gao, Phys. Rev. B 78, 235413 (2008)

    Article  ADS  Google Scholar 

  49. V. Bonačicì-Koutecky, V. Veyret, R. Mitricì, J. Chem. Phys. 115, 10450 (2001)

    Article  ADS  Google Scholar 

  50. R. Poteau, J.-L. Heully, F. Spiegelmann, Z. Phys. D 40, 479 (1997)

    Article  ADS  Google Scholar 

  51. C. Jackschath, I. Rabin, W. Schulze, Z. Phys. D 22, 517 (1992)

    Article  ADS  Google Scholar 

  52. G. Alameddin, J. Hunter, D. Cameron, M.M. Kappes, Chem. Phys. Lett. 192, 122 (1992)

    Article  ADS  Google Scholar 

  53. V. Bonačicì-Kouteckyì, L. Češpiva, P. Fantucci, J. Kouteckyì, J. Chem. Phys. 98, 7981 (1993)

    Article  ADS  Google Scholar 

  54. D. Tian, H. Zhang, J. Zhao, Solid State Commun. 144, 174 (2007)

    Article  ADS  Google Scholar 

  55. M. Tiago, J. Idrobo, S. Öğüt, J. Jellinek, J. Chelikowsky, Phys. Rev. B 79, 155419 (2009)

    Article  ADS  Google Scholar 

  56. R. Fournier, J. Chem. Phys. 115, 2165 (2001)

    Article  ADS  Google Scholar 

  57. V.A. Spasov, T.-H. Lee, K.M. Ervin, J. Chem. Phys. 112, 1713 (2000)

    Article  ADS  Google Scholar 

  58. S. Li, M.M. Alemany, J.R. Chelikowsky, J. Chem. Phys. 125, 34311 (2006)

    Article  Google Scholar 

  59. M. Yang, K.A. Jackson, J. Chem. Phys. 122, 184317 (2005)

    Article  ADS  Google Scholar 

  60. S. Gautam, K. Dharamvir, N. Goel, Comput. Theor. Chem. 1009, 8 (2013)

    Article  Google Scholar 

  61. M.B. Knickelbein, Chem. Phys. Lett. 192, 129 (1992)

    Article  ADS  Google Scholar 

  62. K. Jug, B. Zimmermann, P. Calaminici, A.M. Köster, J. Chem. Phys. 116, 4497 (2002)

    Article  ADS  Google Scholar 

  63. G. Guzmán-Ramírez, F. Aguilera-Granja, J. Robles, Eur. Phys. J. D 57, 335 (2010)

    Article  ADS  Google Scholar 

  64. P. Jaque, A. Toro-Labbeì, J. Chem. Phys. 117, 3208 (2002)

    Article  ADS  Google Scholar 

  65. S. Lecoultre, A. Rydlo, J. Buttet, C. Felix, S. Gilb, W. Harbich, J. Chem. Phys. 134, 184504 (2011)

    Article  ADS  Google Scholar 

  66. M. Harb, F. Rabilloud, D. Simon, A. Rydlo, S. Lecoultre, F. Conus, V. Rodrigues, C. Felix, J. Chem. Phys. 129, 194108 (2008)

    Article  ADS  Google Scholar 

  67. W. Harbich, S. Fedrigo, J. Buttet, Z. Phys. D 26, 138 (1993)

    Article  ADS  Google Scholar 

  68. S. Lecoultre, A. Rydlo, C. Felix, J. Buttet, S. Gilb, W. Harbich, J. Chem. Phys. 134, 074303 (2011)

    Article  ADS  Google Scholar 

  69. G.A. Ozin, D.F. McIntosh, J. Phys. Chem. 90, 5756 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Chen, F. Structural, electronic and optical properties of 7-atom Ag-Cu nanoclusters from density functional theory. Eur. Phys. J. D 68, 91 (2014). https://doi.org/10.1140/epjd/e2014-40737-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40737-y

Keywords

Navigation