Skip to main content

Coherent injecting, extracting, and velocity filtering of neutral atoms in a ring trap via spatial adiabatic passage

Abstract

We introduce a coherent technique to inject, extract, and velocity filter neutral atoms in a ring trap coupled via tunneling to two additional waveguides. By adiabatically following the transverse spatial dark state, the proposed technique allows for an efficient and robust velocity dependent atomic population transfer between the ring and the input/output waveguides. We have derived explicit conditions for the spatial adiabatic passage that depend on the atomic velocity along the input waveguide as well as on the initial population distribution among the transverse vibrational states. The validity of our proposal has been checked by numerical integration of the corresponding two-dimensional Schrödinger equation with state-of-the-art parameter values for 87Rb atoms and an optical dipole ring trap.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems (Oxford University Press, UK, 2012)

  2. 2.

    J. Sabbatini, W.H. Zurek, M.J. Davis, Phys. Rev. Lett. 107, 230402 (2011)

    ADS  Article  Google Scholar 

  3. 3.

    Y. Japha, O. Arzouan, Y. Avishai, R. Folman, Phys. Rev. Lett. 99, 060402 (2007)

    ADS  Article  Google Scholar 

  4. 4.

    L. Plaja, J. San Román, Phys. Rev. A 69, 063612 (2004)

    ADS  Article  Google Scholar 

  5. 5.

    L. Amico, A. Osterloh, F. Cataliotti, Phys. Rev. Lett. 95, 063201 (2005)

    ADS  Article  Google Scholar 

  6. 6.

    A.M. Rey, K. Burnett, I.I. Satija, C.W. Clark, Phys. Rev. A 75, 063616 (2007)

    ADS  Article  Google Scholar 

  7. 7.

    T. Wang, J. Javanainen, S.F. Yelin, Phys. Rev. A 76, 011601 (2007)

    ADS  Article  Google Scholar 

  8. 8.

    J. Javanainen, S.M. Paik, S.M. Yoo, Phys. Rev. A 58, 580 (1998)

    ADS  Article  Google Scholar 

  9. 9.

    L. Salasnich, A. Parola, L. Reatto, Phys. Rev. A 59, 2990 (1999)

    ADS  Article  Google Scholar 

  10. 10.

    M.F. Andersen et al., Phys. Rev. Lett. 97, 170406 (2006)

    ADS  Article  Google Scholar 

  11. 11.

    A. Ramanathan et al., Phys. Rev. Lett. 106, 130401 (2011)

    ADS  Article  Google Scholar 

  12. 12.

    M. Cozzini, B. Jackson, S. Stringari, Phys. Rev. A 73, 013603 (2006)

    ADS  Article  Google Scholar 

  13. 13.

    L.G. Marcassa et al., Phys. Rev. A 72, 060701 (2005)

    ADS  Article  Google Scholar 

  14. 14.

    A. Klein, D. Jaksch, Europhys. Lett. 85, 13001 (2009)

    ADS  Article  Google Scholar 

  15. 15.

    P. Öhberg, J. Opt. 13, 064024 (2011)

    ADS  Article  Google Scholar 

  16. 16.

    G. Birkl et al., Opt. Commun. 191, 67 (2001)

    ADS  Article  Google Scholar 

  17. 17.

    T. Müther et al., J. Phys.: Conf. Ser. 19, 97 (2005)

    ADS  Google Scholar 

  18. 18.

    C. Ryu et al., Phys. Rev. Lett. 99, 260401 (2007)

    ADS  Article  Google Scholar 

  19. 19.

    E.M. Wright, J. Arlt, K. Dholakia, Phys. Rev. A 63, 013608 (2000)

    ADS  Article  Google Scholar 

  20. 20.

    S. Franke-Arnold et al., Opt. Express 15, 8619 (2007)

    ADS  Article  Google Scholar 

  21. 21.

    T. Lauber, Ph.D. thesis, TU Darmstadt, 2013

  22. 22.

    A. Ramanathan et al., Phys. Rev. Lett. 106, 130401 (2011)

    ADS  Article  Google Scholar 

  23. 23.

    S.K. Schnelle et al., Opt. Express 16, 1405 (2008)

    ADS  Article  Google Scholar 

  24. 24.

    I. Lesanovsky, W. von Klitzing, Phys. Rev. Lett. 99, 083001 (2007)

    ADS  Article  Google Scholar 

  25. 25.

    B.E. Sherlock et al., Phys. Rev. A 83, 043408 (2011)

    ADS  Article  Google Scholar 

  26. 26.

    K. Eckert et al., Phys. Rev. A 70, 023606 (2004)

    ADS  Article  Google Scholar 

  27. 27.

    K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998)

    ADS  Article  Google Scholar 

  28. 28.

    K. Eckert et al., Opt. Commun. 264, 264 (2006)

    ADS  Article  Google Scholar 

  29. 29.

    T. Busch, K. Deasy, S. Nic Chormaic, J. Phys.: Conf. Ser. 84, 012002 (2007)

    ADS  Google Scholar 

  30. 30.

    V.O. Nesterenko et al., Laser Phys. 19, 616 (2009)

    ADS  Article  Google Scholar 

  31. 31.

    T. Opatrný, K.K. Das, Phys. Rev. A 79, 012113 (2009)

    ADS  Article  Google Scholar 

  32. 32.

    A. Benseny et al., Phys. Rev. A 82, 013604 (2010)

    ADS  Article  Google Scholar 

  33. 33.

    E.M. Graefe, H.J. Korsch, D. Witthaut, Phys. Rev. A 73, 013617 (2006)

    ADS  Article  Google Scholar 

  34. 34.

    M. Rab et al., Phys. Rev. A 77, 061602R (2008)

    ADS  Article  Google Scholar 

  35. 35.

    Y. Loiko, V. Ahufinger, R. Corbalán, G. Birkl, J. Mompart, Phys. Rev. A 83, 033629 (2011)

    ADS  Article  Google Scholar 

  36. 36.

    S. Longhi, G. Della Valle, M. Ornigotti, P. Laporta, Phys. Rev. B 76, 201101 (2007)

    ADS  Article  Google Scholar 

  37. 37.

    R. Menchon-Enrich, A. Llobera, V.J. Cadarso, J. Mompart, V. Ahufinger, IEEE Photon. Technol. Lett. 24, 536 (2012)

    ADS  Article  Google Scholar 

  38. 38.

    R. Menchon-Enrich, A. Llobera, J. Vila-Planas, V.J. Cadarso, J. Mompart, V. Ahufinger, Light Sci. Appl. 2, e90 (2013)

    Article  Google Scholar 

  39. 39.

    K. Eckert et al., Phys. Rev. A 66, 042317 (2002)

    ADS  Article  Google Scholar 

  40. 40.

    T. Holstein, J. Phys. Chem. 56, 832 (1952)

    Article  Google Scholar 

  41. 41.

    C. Herring, Rev. Mod. Phys. 34, 631 (1962)

    ADS  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jordi Mompart.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loiko, Y., Ahufinger, V., Menchon-Enrich, R. et al. Coherent injecting, extracting, and velocity filtering of neutral atoms in a ring trap via spatial adiabatic passage. Eur. Phys. J. D 68, 147 (2014). https://doi.org/10.1140/epjd/e2014-40696-3

Download citation

Keywords

  • Cold Matter and Quantum Gas