Mapping the two-component atomic Fermi gas to the nuclear shell-model

Abstract

The physics of a two-component cold Fermi gas is now frequently addressed in laboratories. Usually this is done for large samples of tens to hundreds of thousands of particles. However, it is now possible to produce few-body systems (1–100 particles) in very tight traps where the shell structure of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two-component atomic Fermi gas in a tight external trap can be mapped to the nuclear shell-model so that readily available many-body techniques in nuclear physics, such as the Shell-Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an application of the SMMC method by estimating the pairing correlations in a small two-component Fermi system with moderate-to-strong short-range two-body interactions in a three-dimensional harmonic external trapping potential.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  2. 2.

    S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)

    Article  ADS  Google Scholar 

  3. 3.

    W. Ketterle, M.W. Zwierlein, in Proceedings of the International School of Physics “Enrico Fermi”, Varenna, 2006, edited by M. Inguscio, W. Ketterle, C. Salomon (IOS Press, Amsterdam, 2008), Course CLXIV

  4. 4.

    F. Serwane, G. Zürn, T. Lompe, T.B. Ottenstein, A.N. Wenz, S. Jochim, Science 332, 6027 (2011)

    Article  Google Scholar 

  5. 5.

    G. Zürn, F. Serwane, T. Lompe, A.N. Wenz, M.G. Ries, J.E. Bohn, S. Jochim, Phys. Rev. Lett. 108, 075303 (2012)

    Article  ADS  Google Scholar 

  6. 6.

    A. Bohr, B.R. Mottelson, D. Pines, Phys. Rev. 110, 936 (1958)

    Article  ADS  Google Scholar 

  7. 7.

    J. Carlson, S. Gandolfi, A. Gezerlis, Prog. Theor. Exp. Phys. 2012, 01A209 (2012)

    Article  Google Scholar 

  8. 8.

    N.T. Zinner, A.S. Jensen, J. Phys. G 40, 053101 (2013)

    Article  ADS  Google Scholar 

  9. 9.

    G.H. Lang, C.W. Johnson, S.E. Koonin, W.E. Ormand, Phys. Rev. C 48, 1518 (1993)

    Article  ADS  Google Scholar 

  10. 10.

    Y. Alhassid, D.J. Dean, S.E. Koonin, G. Lang, W.E. Ormand, Phys. Rev. Lett. 72, 613 (1994)

    Article  ADS  Google Scholar 

  11. 11.

    S.E. Koonin, D.J. Dean, K. Langanke, Phys. Rep. 278, 1 (1997)

    Article  ADS  Google Scholar 

  12. 12.

    S.Y. Chang, G.F. Bertsch, Phys. Rev. A 76, 021603(R) (2007)

    Article  ADS  Google Scholar 

  13. 13.

    D. Blume, J. von Stecher, C.H. Greene, Phys. Rev. Lett. 99, 233201 (2007)

    Article  ADS  Google Scholar 

  14. 14.

    M.M. Forbes, S. Gandolfi, A. Gezerlis, Phys. Rev. A 86, 053603 (2012)

    Article  ADS  Google Scholar 

  15. 15.

    D. Blume, Rep. Prog. Phys. 75, 046401 (2012) and references therein

    Article  MathSciNet  ADS  Google Scholar 

  16. 16.

    T. Busch, B.G. Englert, K. Rzążewski, M. Wilkens, Found. Phys. 28, 548 (1998)

    Article  Google Scholar 

  17. 17.

    T. Stöferle, H. Moritz, K. Günter, M. Köhl, T. Esslinger, Phys. Rev. Lett. 96, 030401 (2006)

    Article  ADS  Google Scholar 

  18. 18.

    T. Volz et al., Nat. Phys. 2, 692 (2006)

    Article  Google Scholar 

  19. 19.

    G. Thalhammer et al., Phys. Rev. Lett. 96, 050402 (2006)

    Article  ADS  Google Scholar 

  20. 20.

    C. Ospelkaus et al., Phys. Rev. Lett. 97, 120402 (2006)

    Article  ADS  Google Scholar 

  21. 21.

    W.C. Haxton, T. Luu, Phys. Rev. Lett. 89, 182503 (2002)

    Article  ADS  Google Scholar 

  22. 22.

    I. Stetcu, B.R. Barrett, U. van Kolck, Phys. Lett. B 653, 358 (2007)

    Article  ADS  Google Scholar 

  23. 23.

    I. Stetcu, B.R. Barrett, U. van Kolck, J.P. Vary, Phys. Rev. A 76, 063613 (2007)

    Article  ADS  Google Scholar 

  24. 24.

    Y. Alhassid, G.F. Bertsch, L. Fang, Phys. Rev. Lett. 100, 230401 (2008)

    Article  ADS  Google Scholar 

  25. 25.

    I. Stetcu, J. Rotureau, B.R. Barrett, U. van Kolck, Ann. Phys. 325, 1644 (2010)

    Article  ADS  MATH  Google Scholar 

  26. 26.

    T. Luu, M.J. Savage, A. Schwenk, J.P. Vary, Phys. Rev. C 82, 034003 (2010)

    Article  ADS  Google Scholar 

  27. 27.

    J. Rotureau, I. Stetcu, B.R. Barrett, M.C. Birse, U. van Kolck, Phys. Rev. A 82, 032711 (2010)

    Article  ADS  Google Scholar 

  28. 28.

    J.R. Armstrong, N.T. Zinner, D.V. Fedorov, A.S. Jensen, J. Phys. B 44, 055303 (2011)

    Article  ADS  Google Scholar 

  29. 29.

    S. Tölle, H.-W. Hammer, B.C. Metsch, C. R. Phys. 12, 59 (2011)

    Article  ADS  Google Scholar 

  30. 30.

    C.N. Gilbreth, Y. Alhassid, Phys. Rev. A 85, 033621 (2012)

    Article  ADS  Google Scholar 

  31. 31.

    J.R. Armstrong, N.T. Zinner, D.V. Fedorov, A.S. Jensen, Phys. Rev. E 85, 021117 (2012)

    Article  ADS  Google Scholar 

  32. 32.

    N.T. Zinner, K. Mølmer, C. Özen, D.J. Dean, K. Langanke, Phys. Rev. A 80, 013613 (2009)

    Article  ADS  Google Scholar 

  33. 33.

    S. Zhang, J. Carlson, J.E. Gubernatis, Phys. Rev. Lett. 74, 3652 (1995)

    Article  ADS  Google Scholar 

  34. 34.

    S. Zhang, J. Carlson, J.E. Gubernatis, Phys. Rev. B 55 7464 (1997)

    Article  ADS  Google Scholar 

  35. 35.

    S. Zhang, H. Krakauer, Phys. Rev. Lett. 90, 136401 (2003)

    Article  ADS  Google Scholar 

  36. 36.

    A. Bulgac, J.E. Drut, P. Magierski, Phys. Rev. Lett. 96, 090404 (2006)

    Article  ADS  Google Scholar 

  37. 37.

    D. Lee, Phys. Rev. B 73, 115112 (2006)

    Article  ADS  Google Scholar 

  38. 38.

    A. Mukherjee, Y. Alhassid, Phys. Rev. A 88, 053622 (2013)

    Article  ADS  Google Scholar 

  39. 39.

    C. Gilbreth, Y. Alhassid, Phys. Rev. A 88, 063643 (2013)

    Article  ADS  Google Scholar 

  40. 40.

    J. Hubbard, Phys. Rev. Lett. 3, 77 (1959)

    Article  ADS  Google Scholar 

  41. 41.

    R.L. Stratonovich, Dokl. Akad. Nauk. S.S.S.R. 115, 1097 (1957)

    Google Scholar 

  42. 42.

    W. von der Linden, Phys. Rep. 220, 53 (1992)

    Article  ADS  Google Scholar 

  43. 43.

    D.J. Scalapino, R.L. Sugar, Phys. Rev. Lett. 46, 519 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  44. 44.

    J.-W. Chen, D.B. Kaplan, Phys. Rev. Lett. 92, 257002 (2004)

    Article  ADS  Google Scholar 

  45. 45.

    J. Carlson, S.Y. Chang, V.R. Pandharipande, K.E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003)

    Article  ADS  Google Scholar 

  46. 46.

    G.E. Astrakharchik, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. Lett. 93, 200404 (2004)

    Article  ADS  Google Scholar 

  47. 47.

    E. Burovski, N. Prokofev, B. Svistunov, M. Troyer, New J. Phys. 8, 153 (2006)

    Article  ADS  Google Scholar 

  48. 48.

    P. Magierski, G. Wlazlowski, A. Bulgac, J.E. Drut, Phys. Rev. Lett. 103, 210403 (2009)

    Article  ADS  Google Scholar 

  49. 49.

    M.G. Endres, D.B. Kaplan, J.-W. Lee, A.N. Nicholson, Phys. Rev. A 84, 043644 (2011)

    Article  ADS  Google Scholar 

  50. 50.

    J. Carlson, S. Gandolfi, K.E. Schmidt, S. Zhang, Phys. Rev. A 84, 061602(R) (2011)

    Article  ADS  Google Scholar 

  51. 51.

    C. Özen, K. Langanke, G. Martínez-Pinedo, D.J. Dean, Phys. Rev. C 75, 064307 (2007)

    Article  ADS  Google Scholar 

  52. 52.

    T. Rauscher, F.-K. Thielemann, K.-L. Kratz, Phys. Rev. C 56, 1613 (1997)

    Article  ADS  Google Scholar 

  53. 53.

    E. Altman, E. Demler, M.D. Lukin, Phys. Rev. A 70, 013603 (2004)

    Article  ADS  Google Scholar 

  54. 54.

    S. Fölling et al., Nature 434, 481 (2005)

    Article  ADS  Google Scholar 

  55. 55.

    T. Rom et al., Nature 444, 733 (2006)

    Article  ADS  Google Scholar 

  56. 56.

    M. Greiner, C.A. Regal, D.S. Jin, Nature 426, 537 (2003)

    Article  ADS  Google Scholar 

  57. 57.

    C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  MATH  Google Scholar 

  58. 58.

    M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys. Rev. Lett. 92, 120403 (2004)

    Article  ADS  Google Scholar 

  59. 59.

    R.B. Diener, T.L. Ho, arXiv:cond-mat/0404517

  60. 60.

    E. Altman, A. Vishwanath, Phys. Rev. Lett. 95, 110404 (2005)

    Article  ADS  Google Scholar 

  61. 61.

    I. Zapata et al., Phys. Rev. Lett. 105, 095301 (2010)

    Article  ADS  Google Scholar 

  62. 62.

    J. Engel, K. Langanke, P. Vogel, Phys. Lett. B 429, 215 (1998)

    Article  ADS  Google Scholar 

  63. 63.

    V.K. Akkineni, D.M. Ceperley, N. Trivedi, Phys. Rev. B 76, 165116 (2007)

    Article  ADS  Google Scholar 

  64. 64.

    A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, San Francisco, 1971)

  65. 65.

    D.M. Brink, G.R. Satchler, Angular Momentum (Oxford University Press Inc., New York, 1993)

  66. 66.

    H. Heiselberg, B. Mottelson, Phys. Rev. Lett. 88, 190401 (2002)

    Article  ADS  Google Scholar 

  67. 67.

    G.M. Bruun, H. Heiselberg, Phys. Rev. A 65, 053407 (2002)

    Article  ADS  Google Scholar 

  68. 68.

    M. Rontani, J.R. Armstrong, Y. Yu, S. Åberg, S.M. Reimann, Phys. Rev. Lett. 102, 060401 (2009)

    Article  ADS  Google Scholar 

  69. 69.

    S. Nakajima, M. Horikoshi, T. Mukaiyama, P. Naidon, M. Ueda, Phys. Rev. Lett. 106, 143201 (2011)

    Article  ADS  Google Scholar 

  70. 70.

    T. Lompe, T.B. Ottenstein, F. Serwane, A.N. Wenz, G. Zürn, S. Jochim, Science 330, 940 (2010)

    Article  ADS  Google Scholar 

  71. 71.

    J.H. Huckans, J.R. Williams, E.L. Hazlett, R.W. Stites, K.M. O’Hara, Phys. Rev. Lett. 102, 165302 (2009)

  72. 72.

    J.R. Williams et al., Phys. Rev. Lett. 103, 130404 (2009)

    Article  ADS  Google Scholar 

  73. 73.

    T.B. Ottenstein, T. Lompe, M. Kohnen, A.N. Wenz, S. Jochim, Phys. Rev. Lett. 101, 203202 (2008)

    Article  ADS  Google Scholar 

  74. 74.

    S. Nakajima, M. Horikoshi, T. Mukaiyama, P. Naidon, M. Ueda, Phys. Rev. Lett. 105, 023201 (2010)

    Article  ADS  Google Scholar 

  75. 75.

    H. Hara et al., Phys. Rev. Lett. 106, 205304 (2011)

    Article  ADS  Google Scholar 

  76. 76.

    A.V. Gorshkov et al., Nat. Phys. 6, 289 (2010)

    Article  Google Scholar 

  77. 77.

    S. Taie et al., Phys. Rev. Lett. 105, 190401 (2010)

    Article  ADS  Google Scholar 

  78. 78.

    Y.-J. Lin, R.L. Compton, K. Jiménez-García, J.V. Porto, I.B. Spielman, Nature 462, 628 (2009)

    Article  ADS  Google Scholar 

  79. 79.

    Y.-J. Lin, K. Jiménez-García, I.B. Spielman, Nature 471, 83 (2011)

    Article  ADS  Google Scholar 

  80. 80.

    P. Wang et al., Phys. Rev. Lett. 109, 095301 (2012)

    Article  ADS  Google Scholar 

  81. 81.

    L.W. Cheuk et al., Phys. Rev. Lett. 109, 095302 (2012)

    Article  ADS  Google Scholar 

  82. 82.

    S. Moulder, S. Beattie, R.P. Smith, N. Tammuz, Z. Hadzibabic, Phys. Rev. A 86, 013629 (2012)

    Article  ADS  Google Scholar 

  83. 83.

    S. Beattie, S. Moulder, R.J. Fletcher, Z. Hadzibabic, Phys. Rev. Lett. 110, 025301 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nikolaj Thomas Zinner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Özen, C., Zinner, N.T. Mapping the two-component atomic Fermi gas to the nuclear shell-model. Eur. Phys. J. D 68, 225 (2014). https://doi.org/10.1140/epjd/e2014-40687-4

Download citation

Keywords

  • Cold Matter and Quantum Gas