Skip to main content
Log in

Control of dissipation of energy via reservoirs of coherent states

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The low frequency profile of the initial distribution of coherent states of a bosonic environment may control and hinder the dissipation of energy and model the dynamics of a strongly coupled quantum oscillator. The energy of the main oscillator is asymptotically stabilized to its initial value with damped oscillations enveloped in inverse power law decays in addition to pure inverse power law relaxations. Two limiting regimes appear. Arbitrarily slowly damped oscillations around the initial value show oscillating exchange of energy with the environment. For special initial conditions the inverse power law relaxations prevail over long times on the oscillations and the dissipation of energy may be hindered by slowing down arbitrarily the decays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Weiss, Quantum Dissipative Systems, 3rd edn. (World Scientific, Singapore, 2008)

  2. E.B. Davies, Quantum Theory of Open Systems (Academic Press, London, 1976)

  3. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

  4. G.S. Agarwal, Phys. Rev. A 4, 739 (1971)

    Article  ADS  Google Scholar 

  5. F. Haake, in Springer Tracts in Modern Physics (Springer, Heidelberg, 1973), Vol. 66

  6. A.O. Caldeira, A.J. Leggett, Phys. Rev. Lett. 46, 211 (1981)

    Article  ADS  Google Scholar 

  7. A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  8. A.O. Caldeira, A.J. Leggett, Physica A 121, 587 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. C. Morais Smith, A.O. Caldeira, Phys. Rev. A 36, 3509 (1987)

    Article  ADS  Google Scholar 

  10. A.O. Caldeira, A.J. Leggett, Ann. Phys. 149, 374 (1983)

    Article  ADS  Google Scholar 

  11. Dynamics of Dissipation, edited by P. Garbaczewski, R. Olkiewicz, Lecture Notes in Physics (Springer, Berlin, 2003), Vol. 597

  12. W.H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973)

  13. H. Carmichael, An Open Systems Approach to Quantum Optics, Lectures Notes in Physics (Springer-Verlag, Berlin, 1993)

  14. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.O. Stomatescu, H.D. Zeh, Decoherence and the Appearance of Classical World in Quantum Theory (Springer, Berlin, 1996)

  16. G.W. Ford, M. Kac, P. Mazur, J. Math. Phys. 6, 504 (1965)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. F. Haake, R. Reibold, Phys. Rev. A 32, 2462 (1985)

    Article  ADS  Google Scholar 

  18. G.W. Ford, M. Kac, J. Stat. Phys. 6, 803 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  19. H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168, 115 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  20. B.L. Hu, J.P. Paz, Y. Zhang, Phys. Rev. D 45, 2843 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. J.P. Paz, W.H. Zurek, in Coherent Atomic Matter Waves, Proceedings of the 72nd Les Hounches Summer School, edited by R. Kaiser, C. Westbrook, F. David (Springer-Verlag, Berlin, 1999)

  22. G.W. Ford, R.F. O’Connell, Phys. Rev. D 64, 105020 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  23. W. Aschbacher, V. Jaksić, Y. Pautrat, C.-A. Pillet, in Open Quantum Systems III: Recent Developements, in volume 1882 of Lecture Notes in Mathematics, edited by S. Attal, A. Joyce, C.-A. Pillet (Springer, Berlin, 2006)

  24. R.P. Feynman, F.L. Vernon, Ann. Phys. 24, 118 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  25. J.P. Paz, S. Habib, W.H. Zurek, Phys. Rev. D 47, 488 (1993)

    Article  ADS  Google Scholar 

  26. W.H. Zurek, S. Habib, J.P. Paz, Phys. Rev. Lett. 70, 1187 (1993)

    Article  ADS  Google Scholar 

  27. L.D. Romero, J.P. Paz, Phys. Rev. A 55, 4070 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  28. J.R. Anglin, J.P. Paz, W.H. Zurek, Phys. Rev. A 55, 4041 (1997)

    Article  ADS  Google Scholar 

  29. G.W. Ford, R.F. O’Connel, Phys. Rev. D 64, 105020 (2001)

    Article  ADS  Google Scholar 

  30. D.F. Walls, G.J. Milbourn, Phys. Rev. A 31, 2403 (1985)

    Article  ADS  Google Scholar 

  31. C.M. Savage, D.F. Walls, Phys. Rev. A 32, 2316 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  32. S.M. Dutra, Eur. J. Phys. 18, 194 (1997)

    Article  Google Scholar 

  33. S.M. Dutra, J. Mod. Opt. 45, 759 (1998)

    Article  ADS  Google Scholar 

  34. F. Intravia, S. Maniscalco, A. Messina, Phys. Rev. A 67, 042108 (2003)

    Article  ADS  Google Scholar 

  35. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. I. Joichi, Sh. Matsumoto, M. Yoshimura, Phys. Rev. A 57, 798 (1998)

    Article  ADS  Google Scholar 

  37. P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  Google Scholar 

  38. M. Rosenau da Costa, A.O. Caldeira, S.M. Dutra, H. Westfahl, Phys. Rev. A 61, 022107 (2000)

    Article  ADS  Google Scholar 

  39. C. Fleming, N.I. Cummings, C. Anastopoulos, B.L. Hu, J. Phys. A 43, 405304 (2010)

    Article  MathSciNet  Google Scholar 

  40. S. Garmon, T. Petrosky, L. Simine, D. Segal, Fortschr. Phys. 61, 261 (2013)

    Article  MathSciNet  Google Scholar 

  41. B. Praux, R. Bhatt, P.L. Knight, Phys. Rev. A 41, 6296 (1990)

    Article  ADS  Google Scholar 

  42. C.W. Gardiner, P. Zoller, Quantum Noise, 3rd edn. (Springer, Berlin, Heidelberg, New York, 2004)

  43. F. Walls, G.J. Milburn, Quantum Optics, 2nd edn. (Springer, 2008)

  44. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions/Basics Processes and Applications (John Wiley & Sons, New York, 1992)

  45. X. Xiao, Y.-B. Gao, Commun. Theor. Phys. 58, 251 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. A. Pereverzev, Phys. Rev. E 68, 026111 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  47. F. Giraldi, F. Petruccione, Open Syst. Inform. Dyn. 20, 1350002 (2013)

    Article  MathSciNet  Google Scholar 

  48. F. Giraldi, F. Petruccione, J. Phys. A 46, 015304 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  49. C.W. Gardiner, P. Zoller, Quantum Noise, 3rd edn. (Springer Berlin Heidelberg, New York, 2004)

  50. E.C. Titchmarsh, The Theory of functions, 2nd edn. (Oxford University Press, 1997)

  51. E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd edn. (Chelsea Pub. Co., New York, 1986)

  52. A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Tables of Integral Transforms (McGraw-Hill, New York, 1954), Vol. 2

  53. R. Wong, Yu-Qiu Zhao, Proc. R. Soc. Lond. A 458, 625 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  54. R. Wong, Asymptotic Approximations of Integrals (Academic Press, Boston, 1989)

  55. H.S. Wall, Analytic Theory of Continued Fractions (D. Van Nostrand Company Inc., 1948)

  56. E.B. Davies, Commun. Math. Phys. 33, 171 (1973)

    Article  ADS  Google Scholar 

  57. E. Braun, Physica A 129, 262 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  58. P.S. Riseborough, P. Hänggi, U. Weiss, Phys. Rev. A 31, 471 (1985)

    Article  ADS  Google Scholar 

  59. S.F. Norelykke, H. Flyvbjerg, Phys. Rev. E 83, 041103 (2011)

    Article  ADS  Google Scholar 

  60. R. Martinazzo, M. Nest, P. Saalfrank, G.F. Tantardini, J. Chem. Phys. 125, 194102 (2006)

    Article  ADS  Google Scholar 

  61. H.M. Wiseman, J. Vaccaro, Phys. Rev. A 65, 043606 (2002)

    Article  ADS  Google Scholar 

  62. I. Burghardt, R. Martinazzo, K.H. Hughes, J. Chem. Phys. 137, 144107 (2012)

    Article  ADS  Google Scholar 

  63. R.J. Glauber, Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  64. E.C.G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  65. N.-H. Tong, M. Vojta, Phys. Rev. Lett. 97, 016802 (2006)

    Article  ADS  Google Scholar 

  66. D. Porras, F. Marquardt, J. von Delft, J.I. Cirac, Phys. Rev. 782, 010101(R) (2008)

    Article  Google Scholar 

  67. J.T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C.F. Roos, P. Zoller, R. Blatt, Nature 470, 486 (2011)

    Article  ADS  Google Scholar 

  68. K.W. Murch, U. Vool, D. Zhou, S.J. Weber, S.M. Girvin, I. Siddiqi, Phys. Rev. Lett. 109, 183602 (2012)

    Article  ADS  Google Scholar 

  69. F. Giraldi, F. Petruccione, Eur. Phys. J. D 67, 178 (2013) and references therein

    Article  ADS  Google Scholar 

  70. A.D. Polyanin, A.V. Manzhirov, Handbook of Integral Equations (Chapman & Hall/CRC Press, 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Giraldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giraldi, F., Petruccione, F. Control of dissipation of energy via reservoirs of coherent states. Eur. Phys. J. D 68, 24 (2014). https://doi.org/10.1140/epjd/e2013-40602-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40602-7

Keywords

Navigation