Skip to main content
Log in

The GBAR experiment

Gravitational behaviour of antihydrogen at rest

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Measuring the gravitational behaviour of antimatter is a crucial test of the Weak Equivalence Principle. However, the gravitational force is so weak that the experiment requires a cooling of antimatter never achieved so far. The GBAR experiment aims to overcome this challenge using the anti-ion \hbox{$\Hbarp$} H + ; a high-intensity positron source has been developed for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The GBAR Collaboration, Proposal to measure the Gravitational Behaviour of Antihydrogen at Rest, CERN-SPSC-2011-029, SPSC-342, September 2011, http://cds.cern.ch/record/1386684/files/SPSC-P-342.pdf?version=1

  2. P. Pérez, Y. Sacquin, Class. Quantum Grav. 29, 184009 (2012)

    Article  Google Scholar 

  3. The ALPHA Collaboration, A.E. Charman, Nat. Commun. 4, 1785 (2013)

    Article  Google Scholar 

  4. G. Gabrielse et al., Phys. Rev. Lett. 108, 113002 (2012)

    Article  ADS  Google Scholar 

  5. J. Scherk, Phys. Lett. B 88, 265 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Bellucci, V. Faraoni, Phys. Lett. B 377, 55 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  7. G. Chardin, Hyperfine Interact. 109, 83 (1997)

    Article  ADS  Google Scholar 

  8. G. Chardin, AIP Conf. Proc. 643, 385 (2002)

    Article  ADS  Google Scholar 

  9. V.A. Kostelecký, J.D. Tasson, Phys. Rev. D 83, 016013 (2011)

    Article  ADS  Google Scholar 

  10. A. Benoît-Lévy, Ph.D. thesis, Université Paris XI, Orsay, 2009

  11. A. Benoît-Lévy, G. Chardin, A&A 537, A78 (2012)

    Article  ADS  Google Scholar 

  12. L. Blanchet, Class. Quantum Grav. 24, 3529 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. L. Blanchet, Class. Quantum Grav. 24, 3541 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. L. Blanchet, A. Tieck, Phys. Rev. D 78, 024031 (2008)

    Article  ADS  Google Scholar 

  15. L. Blanchet, A. Tieck, Phys. Rev. D 80, 023524 (2009)

    Article  ADS  Google Scholar 

  16. M. Nieto, T. Goldman, Phys. Rep. 205, 221 (1991)

    Article  ADS  Google Scholar 

  17. M. Nieto, T. Goldman, Phys. Rep. 216, 343 (1992)

    Article  Google Scholar 

  18. L.I. Schiff, Phys. Rev. Lett. 1, 254 (1958)

    Article  ADS  Google Scholar 

  19. CPLEAR coll., Phys. Lett. B 452, 425 (1999)

    Article  ADS  Google Scholar 

  20. G. Gabrielse et al., Phys. Rev. Lett. 82, 3198 (1999)

    Article  ADS  Google Scholar 

  21. S. Paksava et al., Phys. Rev. D 39, 1761 (1989)

    Article  ADS  Google Scholar 

  22. J. Walz, T. Hänsch, Gen. Rel. Grav. 36, 561 (2004)

    Article  ADS  MATH  Google Scholar 

  23. N. Oshima et al., Phys. Rev. Lett. 93, 195001 (2004)

    Article  ADS  Google Scholar 

  24. P. Comini, P.-A. Hervieux, New J. Phys. 15, 095022 (2013)

    Article  ADS  Google Scholar 

  25. W. Schnitzler et al., Phys. Rev. Lett. 102, 070501 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Sacquin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacquin, Y. The GBAR experiment. Eur. Phys. J. D 68, 31 (2014). https://doi.org/10.1140/epjd/e2013-40599-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40599-9

Keywords

Navigation