Quantum lithography on bound-free transitions

Regular Article


A new protocol for quantum lithography is presented. A formula which describes the single-quantum bound-free transition to the center of the continuous spectral zone under the action of two monochromatic photon beams is obtained. The derivation is based on the Markov approximation and takes into account all orders of the interaction parameter. The probabilities of bound-free transition for several initial field states are represented: N-photon, entangled N-photon and coherent states cases. The possibility of obtaining thin geometric structures on the surface of photoresist is discussed.


Quantum Optics 


  1. 1.
    D.V. Korobkin, E. Yablonovitch, Opt. Eng. 41, 1729 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    E. Yablonovitch, R.B. Vrijen, Opt. Eng. 38, 334 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    A. Pe’er, B. Dayan, M. Vucelja, Y. Silberberg, A.A. Friesem, Opt. Express 12, 6600 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    N. Dudovich, B. Dayan, S.M. Gallagher Faeder, Y. Silberberg, Phys. Rev. Lett. 86, 47 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Ge Wenchao, P.R. Hemmer, M. Suhail Zubairy, Phys. Rev. A 87, 023818 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    C. Kothe, G. Bjork, S. Inoue, M. Bourennane, New J. Phys. 13, 043028 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    M. Tsang, Phys. Rev. A 75, 043813 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    A.N. Boto, P. Kok, D.S. Abrams, S.L. Braunstein, C.P. Williams, J.P. Dowling, Phys. Rev. Lett. 85, 2733 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    P. Kok, A.N. Boto, D.S. Abrams, C.P. Williams, S.L. Braunstein, J.P. Dowling, Phys. Rev. 63, 063407 (2001)CrossRefGoogle Scholar
  10. 10.
    M. D’Angelo, M.V. Chekhova, Y. Shih, Phys. Rev. Lett. 87, 013602 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    S.V. Zelentsov, N.V. Zelentsova, Photoresists, in The Marcel Dekker Encyclopedia of Chemical Technology (Taylor & Francis, New York, 2006), pp. 2111-2127Google Scholar
  12. 12.
    M.A. Elyashevich, Atomic and molecular spectroscopy, 2nd edn. (Editorial URSS, Moscow, 2001)Google Scholar
  13. 13.
    V.S. Antonov, V.S. Letokhov, A.N. Shibanov, Phys. Usp. 27, 81 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    U. Fano, Phys. Rev. 124, 1866 (1961)ADSCrossRefMATHGoogle Scholar
  15. 15.
    A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    H.J. Kimble, L. Mandel, Phys. Rev. 30, 844 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    H.R. Reiss, Phys. Rev. A 22, 1786 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    M.V. Fedorov, A.E. Kazakov, J. Phys. B 16, 3641 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    A.G. Kofman, J. Phys. B 30, 5141 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    H. Carmichael, An Open Systems Approach to Quantum Optics (Springer-Verlag, Berlin, Heidelberg, New York, 1993)Google Scholar
  21. 21.
    A.M. Perelomov, Phys. Usp. 20, 703 (1977)ADSCrossRefGoogle Scholar
  22. 22.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995), p. 897Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Saint-Petersburg National Research University of Information Technologies, Mechanics and OpticsSaint PetersburgRussia

Personalised recommendations