Skip to main content

Frequency comb polarization spectroscopy of multilevel rubidium atoms

An Erratum to this article was published on 14 August 2014

Abstract

We present a theoretical and experimental study of the polarization effects obtained in 87Rb room temperature atoms excited by an optical frequency comb. The rotation of the linearly-polarized weak optical field (probe) occurs when a strong circularly-polarized coupling (pump) beam breaks the degeneracy of the system and thereby introduces birefringence into the medium. Resonant excitation of the rubidium atoms by circularly-polarized optical frequency comb results in redistribution of angular momentum states that gives a net spin polarization to the medium due to the optical pumping. The density matrix formalism is used to calculate the atom-light interaction and obtained Zeeman sublevel populations were taken for modeling polarization spectra on the D1 transition in the rubidium atom. Modeled polarization signals based on induced optical anisotropy are in very good agreement with obtained experimental results.

This is a preview of subscription content, access via your institution.

References

  1. D. Suter, The Physics of Laser-Atom Interactions (Cambridge University Press, Cambridge, 1997), p. 471

  2. F.J.D. Arago, Mémoires de la classe des sciences math. et phys. de l’Institut Impérial de France 1, 93 (1811)

    Google Scholar 

  3. M. Faraday, Philos. Trans. R. Soc. London XIX, 1 (1848)

    Google Scholar 

  4. M. Faraday, Philos. Mag. 28, 294 (1848)

    Google Scholar 

  5. Z.K. Lee, D. Heiman, H. Wang, C.G. Fonstad, M. Sundaram, A.C. Gossard, Appl. Phys. Lett. 69, 3731 (1996)

    ADS  Article  Google Scholar 

  6. D. Budker, W. Gawlik, D.F. Kimbal, S.M. Rochester, V.V. Yashchuk, A. Weis, Rev. Mod. Phys. 74, 1153 (2002)

    ADS  Article  Google Scholar 

  7. P. Siddons, N.C. Bell, Y. Cai, C.A. Adams, I.G. Hughes, Nat. Photon. 3, 225 (2009)

    ADS  Article  Google Scholar 

  8. I. Novikova, A.B. Matsko, G.R. Welch, Opt. Lett. 26, 1016 (2001)

    ADS  Article  Google Scholar 

  9. P.F. Liao, G.C. Bjorklund, Phys. Rev. Lett. 36, 584 (1992)

    ADS  Article  Google Scholar 

  10. W. Happer, B.S. Mather, Phys. Rev. Lett. 18, 577 (1967)

    ADS  Article  Google Scholar 

  11. W.F. Buell, M. Fink, Appl. Phys. B 60, S227 (1995)

    Article  Google Scholar 

  12. C. Wieman, T.W. Hänsch, Phys. Rev. Lett. 36, 1170 (1976)

    ADS  Article  Google Scholar 

  13. M. Kubasik, M. Koschorrek, M. Napolitano, S.R. de Echaniz, H. Crepaz, J. Eschner, E.S. Polzik, M.W. Mitchell, Phys. Rev. A 79, 043815 (2009)

    ADS  Article  Google Scholar 

  14. K. Hammerer, A.S. Sorensen, E.S. Polzik, Rev. Mod. Phys. 82, 1041 (2010)

    ADS  Article  Google Scholar 

  15. P. Siddons, C.A. Adams, I.G. Hughes, Phys. Rev. A 81, 043838 (2010)

    ADS  Article  Google Scholar 

  16. M.L. Harris, C.S. Adams, S.L. Cornish, I.C. McLeod, E. Tarleton, I.G. Hughes, Phys. Rev. A 73, 063509 (2006)

    ADS  Google Scholar 

  17. F.S. Pavone, G. Bianchini, F.S. Cataliotti, W.T. Hänsch, M. Inguscio, Opt. Lett. 22, 736 (1997)

    ADS  Article  Google Scholar 

  18. S. Wielandy, A.L. Gaeta, Phys. Rev. Lett. 81, 3359 (1998)

    ADS  Article  Google Scholar 

  19. T.H. Yoon, C.Y. Park, S.J. Park, Phys. Rev. A 70, 061802(R) (2004)

    ADS  Article  Google Scholar 

  20. S.J. Park, C.Y. Park, T.H. Yoon, Phys. Rev. A 71, 063819 (2005)

    ADS  Article  Google Scholar 

  21. S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, K.C. Peng, Phys. Rev. A 74, 033821 (2006)

    ADS  Article  Google Scholar 

  22. N. Hombo, S. Taniguchi, S. Sugimura, K. Fujita, M. Mitsunaga, J. Opt. Soc. Am. B 29, 1717 (2012)

    Article  Google Scholar 

  23. J. Ye, S.T. Cundiff, Femtosecond Optical Frequency Comb Technology (Springer, Boston, 2005), p. 361

  24. S.T. Cundiff, J. Ye, Rev. Mod. Phys. 75, 325 (2003)

    ADS  Article  Google Scholar 

  25. A. Marian, M.C. Stowe, J.R. Lawall, D. Felinto, J. Ye, Science 306, 2063 (2004)

    ADS  Article  Google Scholar 

  26. M.C. Stowe, A. Peer, J. Ye, Phys. Rev. Lett. 100, 203001 (2008)

    ADS  Article  Google Scholar 

  27. D. Aumiler, Phys. Rev. A 82, 055402 (2010)

    ADS  Article  Google Scholar 

  28. D. Felinto, C.A.C. Bosco, L.H. Acioli, S.S. Vianna, Opt. Commun. 215, 69 (2003)

    ADS  Article  Google Scholar 

  29. D. Aumiler, T. Ban, G. Pichler, Phys. Rev. A 79, 063403 (2009)

    ADS  Article  Google Scholar 

  30. D. Aumiler, T. Ban, H. Skenderović, G. Pichler, Phys. Rev. Lett. 95, 233001 (2005)

    ADS  Article  Google Scholar 

  31. T. Ban, D. Aumiler, H. Skenderović, G. Pichler, Phys. Rev. A 73, 043407 (2006)

    ADS  Article  Google Scholar 

  32. N. Vujičić, S. Vdović, D. Aumiler, T. Ban, H. Skenderović, G. Pichler, Eur. Phys. J. D 41, 447 (2007)

    ADS  Article  Google Scholar 

  33. N. Vujičić, T. Ban, G. Kregar, D. Aumiler, G. Pichler, Phys. Rev. A 87, 013438 (2013)

    ADS  Article  Google Scholar 

  34. D.A. Steck, Rubidium 87 D Line Data (Oregon Center for Optics and Department of Physics, University of Oregon, Eugene, Oregon, 2010)

  35. O. Axner, J. Gustafsson, N. Omenetto, J.D. Winefordner, Spectrochim. Acta Part B 59, 1 (2004)

    ADS  Article  Google Scholar 

  36. T. Ban, D. Aumiler, H. Skenderović, S. Vdović, N. Vujičić, G. Pichler, Phys. Rev. A 76, 043410 (2007)

    ADS  Article  Google Scholar 

  37. C.P. Pearman, C.A. Adams, S.G. Cox, P.F. Griffin, D.A. Smith, I.G. Hughes, J. Phys. B 35, 5141 (2002)

    ADS  Article  Google Scholar 

  38. W. Demtröder, Laser Spectroscopy (Springer, Berlin, 1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša VVujičić.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

VVujičić, N., Kregar, G., Ban, T. et al. Frequency comb polarization spectroscopy of multilevel rubidium atoms. Eur. Phys. J. D 68, 9 (2014). https://doi.org/10.1140/epjd/e2013-40577-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40577-3

Keywords

  • Optical Phenomena and Photonics