Skip to main content

Relativistic calculations of the U91+(1s)–U92+ collision using the finite basis set of cubic Hermite splines on a lattice in coordinate space

Abstract

A new method for solving the time-dependent two-center Dirac equation is developed. The approach is based on the using of the finite basis of cubic Hermite splines on a three-dimensional lattice in the coordinate space. The relativistic calculations of the excitation and charge-transfer probabilities in the low-energy U91 +(1s)–U92+ collisions in two and three dimensional approaches are performed. The obtained results are compared with our previous calculations employing the Dirac-Sturm basis sets [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701 (2010)]. The role of the negative-energy Dirac spectrum is investigated within the monopole approximation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Eichler, W.E. Meyerhof, Relativistic Atomic Collisions (Academic Press, New York, 1995)

  2. 2.

    V.M. Shabaev, Phys. Rep. 356, 119 (2002)

    ADS  Article  MATH  Google Scholar 

  3. 3.

    J. Eichler, Th. Stöhlker, Phys. Rep. 439, 1 (2007)

    ADS  Article  Google Scholar 

  4. 4.

    I.Yu. Tolstikhina, V.P. Shevelko, Phys. Usp. 56, 213 (2013)

    ADS  Article  Google Scholar 

  5. 5.

    W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer-Verlag, Berlin, 1985)

  6. 6.

    U. Becker, N. Grün, W. Scheid, G. Soff, Phys. Rev. Lett. 56, 2016 (1986)

    ADS  Article  Google Scholar 

  7. 7.

    M.R. Strayer, C. Bottcher, V.E. Oberacker, A.S. Umar, Phys. Rev. A 41, 1399 (1990)

    ADS  Article  Google Scholar 

  8. 8.

    J. Thiel, A. Bunker, K. Momberger, N. Grün, W. Scheid, Phys. Rev. A 46, 2607 (1992)

    ADS  Article  Google Scholar 

  9. 9.

    J.C. Wells, V.E. Oberacker, A.S. Umar, C. Bottcher, M.R. Strayer, J.-S. Wu, G. Plunien, Phys. Rev. A 45, 6296 (1992)

    ADS  Article  Google Scholar 

  10. 10.

    J.C. Wells, V.E. Oberacker, M.R. Strayer, A.S. Umar, Phys. Rev. A 53, 1498 (1996)

    ADS  Article  Google Scholar 

  11. 11.

    M.S. Pindzola, Phys. Rev. A 62, 032707 (2000)

    ADS  Article  Google Scholar 

  12. 12.

    O. Busic, N. Grün, W. Scheid, Phys. Rev. A 70, 062707 (2004)

    ADS  Article  Google Scholar 

  13. 13.

    K. Momberger, A. Belkacem, A.H. Sørensen, Phys. Rev. A 53, 1605 (1996)

    ADS  Article  Google Scholar 

  14. 14.

    D.C. Ionescu, A. Belkacem, Phys. Scr. 80, 128 (1999)

    Article  Google Scholar 

  15. 15.

    J. Eichler, Phys. Rep. 193, 165 (1990)

    ADS  Article  Google Scholar 

  16. 16.

    K. Rumrich, G. Soff, W. Greiner, Phys. Rev. A 47, 215 (1993)

    ADS  Article  Google Scholar 

  17. 17.

    K. Momberger, N. Grün, W. Scheid, J. Phys. B 26, 1851 (1993)

    ADS  Article  Google Scholar 

  18. 18.

    M. Gail, N. Grün, W. Scheid, J. Phys. B 36, 1397 (2003)

    ADS  Article  Google Scholar 

  19. 19.

    P. Küprick, H.J. Lüdde, W.-D. Sepp, B. Fricke, Z. Phys. D 25, 17 (1992)

    ADS  Article  Google Scholar 

  20. 20.

    P. Küprick, W.-D. Sepp, B. Fricke, Phys. Rev. A 51, 3693 (1995)

    ADS  Article  Google Scholar 

  21. 21.

    B. Müller, J. Rafelski, W. Greiner, Z. Phys. 257, 183 (1972)

    ADS  Article  Google Scholar 

  22. 22.

    G. Soff, J. Reinhardt, W. Betz, Phys. Scr. 17, 417 (1978)

    ADS  Article  Google Scholar 

  23. 23.

    T.H.J. de Reus, J. Reinhardt, B. Müller, W. Greiner, G. Soff, U. Müller, J. Phys. B 17, 615 (1984)

    ADS  Article  Google Scholar 

  24. 24.

    E. Ackad, M. Horbatsch, Phys. Rev. A 78, 062711 (2008)

    ADS  Article  Google Scholar 

  25. 25.

    U. Müller-Nehler, G. Soff, Phys. Rep. 246, 101 (1994)

    ADS  Article  Google Scholar 

  26. 26.

    A. Marsman, M. Horbatsch, Phys. Rev. A 84, 032517 (2011)

    ADS  Article  Google Scholar 

  27. 27.

    S.R. McConnell, A.N. Artemyev, M. Mai, A. Surzhykov, Phys. Rev. A 86, 052705 (2012)

    ADS  Article  Google Scholar 

  28. 28.

    I.I. Tupitsyn, Y.S. Kozhedub, V.M. Shabaev, G.B. Deyneka, S. Hagmann, C. Kozhuharov, G. Plunien, Th. Stöhlker, Phys. Rev. A 82, 042701 (2010)

    ADS  Article  Google Scholar 

  29. 29.

    I.I. Tupitsyn, Y.S. Kozhedub, V.M. Shabaev, A.I. Bondarev, G.B. Deyneka, I.A. Maltsev, S. Hagmann, G. Plunien, Th. Stöhlker, Phys. Rev. A 85, 032712 (2012)

    ADS  Article  Google Scholar 

  30. 30.

    Y.S. Kozhedub, I.I. Tupitsyn, V.M. Shabaev, S. Hagmann, G. Plunien, Th. Stöhlker, Phys. Scr. T156, 014053 (2013)

    ADS  Article  Google Scholar 

  31. 31.

    A.I. Bondarev, Y.S. Kozhedub, I.I. Tupitsyn, V.M. Shabaev, G. Plunien, Phys. Scr. T156, 014054 (2013)

    ADS  Article  Google Scholar 

  32. 32.

    I.A. Maltsev, G.B. Deyneka, I.I. Tupitsyn, V.M. Shabaev, Y.S. Kozhedub, G. Plunien, Th. Stöhlker, Phys. Scr. T156, 014056 (2013)

    ADS  Article  Google Scholar 

  33. 33.

    G.B. Deineka, Int. J. Quant. Chem. 100, 677 (2004)

    Article  Google Scholar 

  34. 34.

    G.B. Deineka, Int. J. Quant. Chem. 106, 2262 (2006)

    ADS  Article  Google Scholar 

  35. 35.

    C. de Boor, A Practical Guide to Splines, volume 27 of Applied Mathematical Sciences, revised edn. (Springer, New York, 2001)

  36. 36.

    W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37, 307 (1988)

    ADS  Article  MathSciNet  Google Scholar 

  37. 37.

    V.M. Shabaev, I.I. Tupitsyn, V.A. Yerokhin, G. Plunien, G. Soff, Phys. Rev. Lett. 93, 130405 (2004)

    ADS  Article  Google Scholar 

  38. 38.

    A.N. Artemyev, E.V. Ludena, V.V. Karasiev, A.J. Hernández, J. Comput. Chem. 25, 368 (2004)

    Article  Google Scholar 

  39. 39.

    A.N. Artemyev, A. Surzhykov, P. Indelicato, G. Plunien, Th. Stöhlker, J. Phys. B 43, 235207 (2010)

    ADS  Article  Google Scholar 

  40. 40.

    J.C. Morrison, C. Baunach, L. Larson, B. Bialecki, G. Fairweather, J. Phys. B 29, 2375 (1996)

    ADS  Article  Google Scholar 

  41. 41.

    J.C. Morrison, T. Wolf, B. Bialecki, G. Fairweather, L. Larson, Mol. Phys. 98, 1175 (2000)

    ADS  Article  Google Scholar 

  42. 42.

    G.B. Deineka, Opt. Spectrosc. 81, 159 (1996)

    ADS  Google Scholar 

  43. 43.

    T. Ozaki, M. Toyoda, Comput. Phys. Commun. 182, 1245 (2011)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  44. 44.

    J. Crank, P. Nicolson, Proc. Camb. Philos. Soc. 43, 50 (1947)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  45. 45.

    R.S. Varga, Matrix Iterative Analysis, volume 27 of Springer Series in Computational Mathematics (Springer-Verlag, Berlin-Heidelberg, 2000)

  46. 46.

    P. Schlüter, K.-H. Wietschorke, W. Greiner, J. Phys. A 16, 1999 (1983)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  47. 47.

    P. Lancaster, M. Tismenetsky, The Theory of Matrices, 2nd edn. (Academic Press, New York, 1985)

  48. 48.

    Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn. (SIAM, Philadelphia, 2003)

  49. 49.

    P. Joly, Numer. Algorithms 4, 379 (1993)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  50. 50.

    R. McWeeny, Methods of Molecular Quantum Mechanics, 2nd edn. (Academic Press, 2001)

  51. 51.

    E.S. Fradkin, D.M. Gitman, S.M. Shvartsman, Quantum Electrodynamics with Unstable Vacuum (Springer-Verlag, Berlin, 1991)

  52. 52.

    Y.S. Kozhedub, O.V. Andreev, V.M. Shabaev, I.I. Tupitsyn, C. Brandau, C. Kozhuharov, G. Plunien, T. Stöhlker, Phys. Rev. A 77, 032501 (2008)

    ADS  Article  Google Scholar 

  53. 53.

    V.F. Brattsev, Tables of Wave Functions (Nauka, Moscow, 1966) (in Russian)

  54. 54.

    L.V. Chernysheva, N.A. Cherepkov, V. Radojević, Comput. Phys. Commun. 11, 57 (1976)

    ADS  Article  Google Scholar 

  55. 55.

    V.F. Brattsev, G.B. Deineka, I.I. Tupitsyn, Izv. Akad. Nauk SSSR 41, 2655 (1977) (in Russian)

    Google Scholar 

  56. 56.

    V.F. Brattsev, G.B. Deineka, I.I. Tupitsyn, Bull. Acad. Sci. USSR Phys. Ser. 41, 173 (1977)

    Google Scholar 

  57. 57.

    P.O. Löwdin, J. Chem. Phys. 18, 365 (1950)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ilia A. Maltsev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deyneka, G.B., Maltsev, I.A., Tupitsyn, I.I. et al. Relativistic calculations of the U91+(1s)–U92+ collision using the finite basis set of cubic Hermite splines on a lattice in coordinate space. Eur. Phys. J. D 67, 258 (2013). https://doi.org/10.1140/epjd/e2013-40441-6

Download citation

Keywords

  • Atomic Physics