Self-assembling and self-limiting monolayer deposition

Topical Review

Abstract

Effects of spatial ordering of molecules on surfaces are commonly utilized to deposit ultra-thin films with a thickness of a few nm. In this review paper, several methods are discussed, that are distinguished from other thin film deposition processes by exactly these effects that lead to self-assembling and self-limiting layer growth and eventually to coatings with unique and fascinating properties and applications in micro-electronics, optics, chemistry, or biology. Traditional methods for the formation of self-assembled films of ordered organic molecules, such as the Langmuir-Blodgett technique along with thermal atomic layer deposition (ALD) of inorganic molecules are evaluated. The overview is complemented by more recent developments for the deposition of organic or hybrid films by molecular layer deposition. Particular attention is given to plasma assisted techniques, either as a preparative, supplementary step or as inherent part of the deposition as in plasma enhanced ALD or plasma assisted, repeated grafting deposition. The different methods are compared and their film formation mechanisms along with their advantages are presented from the perspective of a plasma scientist. The paper contains lists of established film compounds and a collection of the relevant literature is provided for further reading.

References

  1. 1.
    G. Ozaydin-Ince, A.M. Coclite, K.K. Gleason, Rep. Prog. Phys. 75, 016501 (2012)ADSGoogle Scholar
  2. 2.
    A. Ohl, W. Besch, H. Steffen, R. Foest, M. Arens, K. Wandel, Plasma Process. Polym. 6, 425 (2009)Google Scholar
  3. 3.
    R. Dittmann, in Electronic Oxides – Correlation Phenomena, Exotic Phases and Novel Functionalities, edited by S. Blügel, Th. Brückel, R. Waser, C.M. Schneider, Lecture Notes of the 41th Spring School 2010 (Forschungszentrum Jülich, Jülich, 2010), Vol. 13Google Scholar
  4. 4.
    J.A. Venables, Introduction to surface and thin film Processes (Cambridge University Press, 2000)Google Scholar
  5. 5.
    P. Ebert, K. Szot, in Nanoelectronics and Information Technology, Advanced Electronic Materials and Novel Devices, edited by R. Waser, 3rd edn. (Wiley-VCH, Weinheim, 2012), pp. 255–281Google Scholar
  6. 6.
    Y.B. Qi, Surf. Sci. Rep. 66, 379 (2011)ADSGoogle Scholar
  7. 7.
    A. Gulino, Anal. Bioanal. Chem. 405, 1479 (2013)Google Scholar
  8. 8.
    M. Zharnikov, J. Electron Spectrosc. Relat. Phenom. 178, 380 (2010)Google Scholar
  9. 9.
    K. Ariga, J.P. Hill, M.V. Lee, A. Vinu, R. Charvret, S. Acharya, Sci. Technol. Adv. Mater. 9, 014109 (2008)Google Scholar
  10. 10.
    B. Voigtländer, S. Karthäuser, S.N. Filimonov, S.L. Tait, in Nanoelectronics and Information Technology, Advanced Electronic Materials and Novel Devices, edited by R. Waser, 3rd edn. (Wiley-VCH, Weinheim, 2012), pp. 305–320Google Scholar
  11. 11.
    Atomic Layer Deposition of Nanostructured Materials, edited by N. Pinna, M. Knez (Wiley-VCH Verlag, 2012)Google Scholar
  12. 12.
    B. Yoon, J.L. O’Patchen, D. Seghete, A.S. Cavanagh, S.M. George, Chem. Vap. Dep. 15, 112 (2009)Google Scholar
  13. 13.
    Langmuir-Blodgett Films, edited by G. Roberts (Plenum Press, New York, London, 1990)Google Scholar
  14. 14.
    A. Ulman, An Introduction to Ultrathin Organic Films, From Langmuir-Blodgett to Self-Assembly (Academic Press, Boston, 1991)Google Scholar
  15. 15.
    M.C. Petty, Langmuir-Blodgett films, an introduction (Cambridge University Press, 1996)Google Scholar
  16. 16.
    G. Hähner, in Encyclopedia of Chemical Physics and Physical Chemistry, edited by J.H. Moore, N.D. Spencer (IOP Bristol and Philadelphia, 2001), pp. 2317–2344Google Scholar
  17. 17.
    D.R. Talham, T. Yamomoto, M.W. Meiseil, J. Phys.: Condens. Matter 20, 184006 (2008)ADSGoogle Scholar
  18. 18.
    S.A. Evenson, J.P.S. Badyal, C. Pearson, M.C. Petty, J. Phys. Chem. 100, 11672 (1996)Google Scholar
  19. 19.
    I.R. Peterson, J. Phys. D 23, 379 (1990)ADSGoogle Scholar
  20. 20.
    S.A. Hussain, D. Bhattacharjee, Mod. Phys. Lett. B 23, 3437 (2009)ADSGoogle Scholar
  21. 21.
    L. Valli, Adv. Coll. Interface Sci. 116, 33 (2005)Google Scholar
  22. 22.
    A.A. Kalachev, K. Mathauer, U. Hohne, H. Mohwald, G. Wegner, Thin Solid Films 228, 307 (1993)ADSGoogle Scholar
  23. 23.
    V. Hessel, P. Detemple, J.F. Geiger, M. Keil, R. Schafer, R. Festag, J.H. Wensdorff, Thin Solid Films 286 (1996)Google Scholar
  24. 24.
    E. Soterakou, K. Beltsios, T. Steriotis, N. Kanellopoulos, J. Porous Mater. 8, 251 (2001)Google Scholar
  25. 25.
    A. Ulman, Chem. Rev. 96, 1533 (1996)Google Scholar
  26. 26.
    M. Boeckl, D. Graham, Mater. Matt. 1, 3 (2006)Google Scholar
  27. 27.
    J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103 (2005)Google Scholar
  28. 28.
    F. Schreiber, Prog. Surf. Sci. 65, 151 (2000)ADSGoogle Scholar
  29. 29.
    D.B. Mitzi, Chem. Mater. 13, 3283 (2001)Google Scholar
  30. 30.
    D.K. Aswal, S. Lenfant, D. Guerin, J.V. Yakhmi, D. Vuillaume, Anal. Chem. Acta 568, 84 (2006)Google Scholar
  31. 31.
    V.T. Joy, D. Mandler, ChemPhysChem 3, 973 (2002)Google Scholar
  32. 32.
    M. Zharnikov, A. Kuller, A. Shaporenko, E. Schmidt, W. Eck, Langmuir 19, 4682 (2003)Google Scholar
  33. 33.
    T.L. Niederhauser, Y.-Y. Lua, G. Jiang, S.D. Davis, R. Matheson, D.A. Hess, I.A. Mowat, M.R. Linfort, Angew. Chem. Int. Ed. Engl. 41, 2353 (2002)Google Scholar
  34. 34.
    H.G. Chen, X.D. Wu, Q.Q. Yu, S.R. Yang, D.P. Wang, W.Z. Shen, Chin. J. Chem. 20, 1467 (2002)Google Scholar
  35. 35.
    H.J. Himmel, M. Kaschke, P. Harder, C. Woell, Thin Solid Films 284–286, 275 (1996)Google Scholar
  36. 36.
    J.J. Benitez, S. Koptan, D.F. Ogletree, M. Salmeron, Langmuir 18, 6096 (2002)Google Scholar
  37. 37.
    S. Frey, A. Shaporenko, M. Zharnikov, P. Harder, D.L. Allara, J. Phys. Chem. B 107, 7716 (2003)Google Scholar
  38. 38.
    P.E. Laibinis, G.M. Whitesides, D.L. Allara, Y.T. Tao, A.N. Parikh, R.G. Nuzzo, J. Am. Chem. Soc. 113, 7152 (1991)Google Scholar
  39. 39.
    Z. Li, S.C. Chang, R.S. Williams, Langmuir 19, 6744 (2003)Google Scholar
  40. 40.
    F. Sinapi, L. Forget, J. Delhalle, Z. Mekhalif, Appl. Surf. Sci. 212-213, 464 (2003)ADSGoogle Scholar
  41. 41.
    R. Colorado Jr., R.J. Villazana, T.R. Lee, Langmuir 14, 6337 (1998)Google Scholar
  42. 42.
    S.W. Han, S.J. Lee, K. Kim, Langmuir 17, 6981 (2001)Google Scholar
  43. 43.
    L.V. Protsailo, W.R. Fawcett, D. Russell, R.L. Meyer, Langmuir 28, 9342 (2002)Google Scholar
  44. 44.
    J.J. Hickman, P.E. Laibinis, D.I. Auerbach, C. Zou, T.J. Gardner, G.M. Whitesides, M.S. Wrighton, Langmuir 8, 357 (1992)Google Scholar
  45. 45.
    A.Y. Fadeev, R. Helmy, S. Marcinko, Langmuir 18, 7521 (2002)Google Scholar
  46. 46.
    L. Netzer, J. Sagiv, J. Am. Chem. Soc. 105, 674 (1983)Google Scholar
  47. 47.
    M. Kittelmann, P. Rahe, A. Kühnle, J. Phys.: Condens. Matter 24, 354007 (2012)Google Scholar
  48. 48.
    H.-Q. Mao, N. Li, X. Chen, Q.-K. Xue, J. Phys.: Condens. Matter 24, 084004 (2012)ADSGoogle Scholar
  49. 49.
    M. Nimmrich, P. Rahe, M. Kittelmann, A. Kühnle, Phys. J. 11, 29 (2012)Google Scholar
  50. 50.
    J. Barth, Annu. Rev. Phys. Chem. 58, 375 (2007)ADSGoogle Scholar
  51. 51.
    J. Repp, G. Meyer, Chimia 64, 370 (2010)Google Scholar
  52. 52.
    S.A. DiBenedetto, A. Facchetti, M.A. Ratner, T.J. Marks, Adv. Mater. 21, 1407 (2009)Google Scholar
  53. 53.
    Y.D. Park, D.H. Kim, Y. Jang, M. Hwang, J.A. Lim, K. Cho, Appl. Phys. Lett. 87, 243509 (2005)ADSGoogle Scholar
  54. 54.
    H. Ma, O. Acton, G. Ting, J.W. Ka, H.L. Yip, N. Tucker, R. Schofield, A.K.-Y. Jen, Appl. Phys. Lett. 92, 113303 (2008)ADSGoogle Scholar
  55. 55.
    K. Vijayamohanan, M. Aslam, Appl. Biochem. Biotechnol. 96, 25 (2001)Google Scholar
  56. 56.
    L. Jiang, C.J. McNeil, J.M. Cooper, J. Chem. Soc. Chem. Commun., 1293 (1995)Google Scholar
  57. 57.
    K.M. Millan, S.R. Mikkelsen, Anal. Chem. 65, 2317 (1993)Google Scholar
  58. 58.
    Y. Ishikawa, K. Okumura, T. Ishida, S. Samukawa, J. Appl. Phys. 105, 094320 (2009)ADSGoogle Scholar
  59. 59.
    S.-T. Chen, G.-S. Chen, Langmuir 27, 12143 (2011)Google Scholar
  60. 60.
    J. Friedrich, W. Unger, A. Lippitz, Sh. Geng, I. Koprinarov, G. Kühn, St. Weidner, Surf. Coat. Technol. 98, 1132 (1998)Google Scholar
  61. 61.
    L. Wu, E. Eisenbraun, J. Vac. Sci. Technol. B 25, 2581 (2007)Google Scholar
  62. 62.
    Y.-T. Wu, J.-D. Liao, C.-C. Weng, M.-C. Wang, J.-E. Chang, C.-H. Chen, M. Zharnikov, Contrib. Plasma Phys. 47, 89 (2007)ADSGoogle Scholar
  63. 63.
    F.S. Bates, Science 251, 898 (1991)ADSGoogle Scholar
  64. 64.
    J.K. Cox, A. Eisenberg, R.B. Lennox, Curr. Opin. Colloid Interface Sci. 4, 52 (1999)Google Scholar
  65. 65.
    M. Li, Ch.A. Coenjarts, Ch.K. Ober, Adv. Polym. Sci. 190, 183 (2005)Google Scholar
  66. 66.
    P. Mansky, C.K. Harrison, P.M. Chaikin, R.A. Register, N. Yao, Appl. Phys. Lett. 68, 2586 (1996)ADSGoogle Scholar
  67. 67.
    K.L. Choy, Prog. Mater. Sci. 48, 57 (2003)Google Scholar
  68. 68.
    R.L. Puurunen, J. Appl. Phys. 97, 121301 (2005)ADSGoogle Scholar
  69. 69.
    V. Miikkulainen, M. Leskel, M. Ritala, R.L. Puurunen, J. Appl. Phys. 113, 021301 (2013)ADSGoogle Scholar
  70. 70.
    S.M. Georges, Chem. Rev. 110, 111 (2010)Google Scholar
  71. 71.
    P. Poodt, D.C. Cameron, E. Dickey, S.M. George, V. Kuznetsov, G.N. Parsons, F. Roozeboom, G. Sundaram, A. Vermeer, J. Vac. Sci. Technol. A 30, 010802 (2012)Google Scholar
  72. 72.
    C.B. Musgrave, in Atomic Layer Deposition of Nanostructured Materials, edited by N. Pinna, M. Knez (Wiley-VCH Verlag, 2012), pp. 3–21Google Scholar
  73. 73.
    O. Sneh, R.B. Clark-Phelps, A.R. Londergan, J. Winkler, Th.E. Seidel, Thin Solid Films 402, 248 (2002)ADSGoogle Scholar
  74. 74.
    H. Kumagai, M. Matsumoto, Y. Kawamura, K. Toyoda, M. Obara, Jpn J. Appl. Phys. 33, 7086 (1994)ADSGoogle Scholar
  75. 75.
    W.J. Elam, in Atomic Layer Deposition of Nanostructured Materials, edited by N. Pinna, M. Knez (Wiley-VCH Verlag, 2012), pp. 227–249Google Scholar
  76. 76.
    D.D. Fong, J.A. Eastman, S.K. Kim, T.T. Fister, M.J. Highland, P.M. Baldo, P.H. Fuoss, Appl. Phys. Lett. 97, 191904 (2010)ADSGoogle Scholar
  77. 77.
    R.L. Puurunen, W. Vandervorst, J. Appl. Phys. 96, 7686 (2004)ADSGoogle Scholar
  78. 78.
    M. Putkonen, in Atomic Layer Deposition of Nanostructured Materials, edited by N. Pinna, M. Knez (Wiley-VCH, 2012), pp. 41–59Google Scholar
  79. 79.
    P.R. Chalker, S. Romani, P.A. Marshall, M.J. Rosseinsky, S. Rushworth, P.A. Williams, Nanotechnology 21, 405602 (2010)Google Scholar
  80. 80.
    S.K. Kim, S. Hoffmann-Eifert, R. Waser, J. Phys. Chem. C 113, 11329 (2009)Google Scholar
  81. 81.
    H.L. Lu, S.J. Ding, D.W. Zhang, Electrochem. Solid State Lett. 13, G25 (2010)Google Scholar
  82. 82.
    A. Delabie, J. Rip, S. Van Elshocht, G. Pourtois, M. Mueller, B. Beckhoff, K. Pierloot, J. Vac. Sci. Technol. A 30, 01A127 (2012)Google Scholar
  83. 83.
    K. Knapas, M. Ritala, Chem. Mater. 23, 2766 (2011)Google Scholar
  84. 84.
    D. Seghete, G.B. Rayner Jr., A.S. Cavanagh, A.S. Cavanagh, V.R. Anderson, S.M. George, Chem. Mater. 23, 1668 (2011)Google Scholar
  85. 85.
    M. Rooth, E. Lindahl, A. Harsta, Chem. Vap. Dep. 12, 209 (2006)Google Scholar
  86. 86.
    R.L. Puurunen, T. Sajavaara, E. Santala, V. Miikkulainen, T. Saukkonen, M. Laitinen, M. Leskela, J. Nanosci. Nanotechnol. 11, 8101 (2011)Google Scholar
  87. 87.
    H. Tiznado, M. Bouman, B.-C. Kang, K. Lee, F. Zaera, J. Mol. Catal. A: Chem. 281, 35 (2008)Google Scholar
  88. 88.
    G.K. Hyde, S.D. McCullen, S. Jeon, S.M. Stewart, H. Jeon, E.G. Loboa, G.N. Parsons, Biomed. Mater. 4, 025001 (2009)ADSGoogle Scholar
  89. 89.
    B. Lee, J. Hwang, S. Lee, J. Kim, S.-M. Koo, A. Baunemann, R. Fischer, M. Sung, Angew. Chem. Int. Ed. 48, 4536 (2009)Google Scholar
  90. 90.
    M. Knaut, M. Junige, M. Albert, J.W. Bartha, J. Vac. Sci. Technol. A 30, 01A151 (2012)Google Scholar
  91. 91.
    A. Salaun, J. Trommer, S.B. Newcomb, I.M. Povey, M. Salaun, L. Keeney, A. O’Mahony, M.E. Pemble, Chem. Vap. Dep. 17, 114 (2011)Google Scholar
  92. 92.
    L.D. Salmi, E. Puukilainen, M. Vehkamaki, M. Heikkila, M. Ritala, Chem. Vap. Dep. 15, 221 (2009)Google Scholar
  93. 93.
    Z.W. Fang, H.C. Aspinall, R. Odedra, R.J. Potter, J. Cryst. Growth 33, 33 (2011)ADSGoogle Scholar
  94. 94.
    T. Blomberg, C. Wenger, C.B. Kaynak, G. Ruhl, P. Baumann, Microelectron. Eng. 88, 2447 (2011)Google Scholar
  95. 95.
    H.B.R. Lee, S.F. Bent, Chem. Mater. 24, 279 (2012)Google Scholar
  96. 96.
    T.W. Scharf, S.V. Prasad, M.T. Dugger, P.G. Kotula, R.S. Goeke, R.K. Grubbs, Acta Mater. 54, 4731 (2006)Google Scholar
  97. 97.
    R.W. Wind, F.H. Fabreguette, Z.A. Sechrist, S.M. George, J. Appl. Phys. 105, 0974309 (2009)Google Scholar
  98. 98.
    D. Zhou, U. Schroeder, J. Xu, J. Heitmann, G. Jegert, W. Weinreich, M. Kerber, S. Knebel, E. Erben, T. Mikolajick, J. Appl. Phys. 108, 124104 (2010)ADSGoogle Scholar
  99. 99.
    D. Schmidt, E. Schubert, M. Schubert, Appl. Phys. Lett. 100, 011912 (2012)ADSGoogle Scholar
  100. 100.
    Y. Morita, S. Migita, W. Mizubayashi, H. Ota, Jpn J. Appl. Phys. 51, 02BA04 (2012)Google Scholar
  101. 101.
    S.W. Smith, K.G. McAuliffe, J.F. Conley, Solid-State Electron. 54, 1076 (2010)ADSGoogle Scholar
  102. 102.
    I. Jogi, A. Tamm, K. Kukli, M. Kemell, J. Lu, T. Sajavaara, M. Ritala, M. Leskela, J. Electrochem. Soc. 157, G202 (2010)Google Scholar
  103. 103.
    D.H. Levy, D. Freeman, S.F. Nelson, P.J. Cowdery-Corvan, L.M. Irving, Appl. Phys. Lett. 92, 192101 (2008)ADSGoogle Scholar
  104. 104.
    K. Hughes, J. Engstrom, J. Vac. Sci. Technol. A 28, 1033 (2010)Google Scholar
  105. 105.
    X. Jiang, S.F. Bent, J. Phys. Chem. C 113, 17613 (2009)Google Scholar
  106. 106.
    B.H. Lee, B. Yoon, V.R. Anderson, S.M. George, J. Phys. Chem. C 116, 3250 (2012)Google Scholar
  107. 107.
    Y. Xu, C.B. Musgrave, Chem. Mater. 16, 646 (2004)Google Scholar
  108. 108.
    K. Koumoto, N. Saito, Y. Gao, Y. Masuda, P. Zhu, Bull. Chem. Soc. Jpn 81, 1337 (2008)Google Scholar
  109. 109.
    H.B.R. Lee, S.F. Bent, in Atomic layer deposition of nanostructured materials, edited by N. Pinna, M. Knez (Wiley-VCH, Weinheim, 2012), pp. 193–225Google Scholar
  110. 110.
    Low Temperature Plasmas, Fundamentals, Technologies, and Techniques, edited by R. Hippler, H. Kersten, M. Schmidt, K. Schoenbach, 2nd edn. (Wiley, 2008)Google Scholar
  111. 111.
    Nonthermal Plasma Chemistry and Physics, edited by J. Meichsner, M. Schmidt, R. Schneider, H.E. Wagner (CRC Press, Taylor & Francis, Boca Raton, 2013)Google Scholar
  112. 112.
    E. Kessels, H. Profijt, S. Potts, R. van de Sanden, in Atomic Layer Deposition of Nanostructured Materials, edited by N. Pinna, M. Knez (Wiley-VCH, 2012), pp. 131–157Google Scholar
  113. 113.
    H.B. Profijt, S.E. Potts, M.C.M. van de Sanden, W.M.M. Kessels, J. Vac. Sci. Technol. A 29, 050801 (2011)Google Scholar
  114. 114.
    Y. Kim, J. Koo, J. Han, S. Choi, H. Jeon, C.-G. Park, J. Appl. Phys. 92, 5443 (2002)ADSGoogle Scholar
  115. 115.
    J.L. van Hemmen, S.B.S. Heil, J.H. Klootwijk, F. Roozeboom, C.J. Hodson, M.C.M. van de Sanden, W.M.M. Kessels, J. Electrochem. Soc. 154, G165 (2007)Google Scholar
  116. 116.
    R.K. Grubbs, S.M. George, J. Vac. Sci. Technol. 24, 486 (2006)Google Scholar
  117. 117.
    J. Joo, S.M. Rossnagel, J. Korean Phys. Soc. 54, 1048 (2009)ADSGoogle Scholar
  118. 118.
    S.B.S. Heil, E. Langereis, F. Roozeboom, M.C.M. van de Sanden, W.M.M. Kessels, J. Electrochem. Soc. 153, G956 (2006)Google Scholar
  119. 119.
    E. Langereis, J. Keijmel, M.C.M. van de Sanden, W.M.M. Kessels, Appl. Phys. Lett. 92, 23904 (2008)Google Scholar
  120. 120.
    S.E. Potts, W. Keuning, E. Langereis, G. Dingeman, M.C.M. van de Sanden, W.M.M. Kessels, J. Electrochem. Soc. 157, 66 (2010)Google Scholar
  121. 121.
    L. Baker, A.S. Cavanagh, D. Seghete, S.M. George, A.J.M. Mackus, W.M.M. Kessels, Z.Y. Liu, F.T. Wagner, J. Appl. Phys. 109, 08433 (2011)Google Scholar
  122. 122.
    H. Jeon, Y. Won, Appl. Phys. Lett. 93, 124104 (2008)ADSGoogle Scholar
  123. 123.
    Yumi Kawamura, N. Hattori, N. Miyatake, M. Horita, Y. Uraoka, Jpn J. Appl. Phys. 50, 04DF05 (2011)Google Scholar
  124. 124.
    S.B.S. Heil, J.L. van Hemmen, M.C.M. van de Sanden, W.M.M. Kessels, J. Appl. Phys. 103, 103302 (2008)ADSGoogle Scholar
  125. 125.
    E. Langereis, H.C.M. Knoops, A.J.M. Mackus, F. Roozeboom, M.C.M. van de Sanden, W.M.M. Kessels, J. Appl. Phys. 102, 083517 (2007)ADSGoogle Scholar
  126. 126.
    P.K. Park, S.W. Kang, Appl. Phys. Lett. 89, 192905 (2006)ADSGoogle Scholar
  127. 127.
    A. Niskanen, T. Hatanpää, K. Arstila, M. Leskelä, M. Ritala, Chem. Vap. Dep. 13, 408 (2007)Google Scholar
  128. 128.
    J.M. Kim, H.B.R. Lee, C. Lansalot, C. Dussarrat, J. Gatineau, H. Kim, Jpn J. Appl. Phys. 49, 05FA10 (2010)Google Scholar
  129. 129.
    H.B.R. Lee, J. Kim, H. Kim, W.H. Kim, J.W. Lee, I. Hwang, J. Korean Phys. Soc. 56, 104 (2010)Google Scholar
  130. 130.
    H.B.R. Lee, J.Y. Son, H. Kim, Appl. Phys. Lett. 90, 213509 (2007)ADSGoogle Scholar
  131. 131.
    H.B.R. Lee, H. Kim, Electrochem. Solid State Lett. 9, G323 (2006)Google Scholar
  132. 132.
    A. Niskanen, A. Rahtu, T. Sajavaara, K. Arstila, M. Ritala, M. Leskela, J. Electrochem. Soc. 151, G25 (2005)Google Scholar
  133. 133.
    L. Wu, E. Eisenbraun, Electrochem. Solid State Lett. 11, H107 (2008)Google Scholar
  134. 134.
    S.W. Kim, S.H. Kwon, S.J. Jeong, J.S. Park, S.W. Kang, Electrochem. Solid State Lett. 11, H303 (2008)Google Scholar
  135. 135.
    H.B.R. Lee, S.H. Bang, W.H. Kim, G.H. Gu, Y.K. Lee, T.M. Chung, C.G. Kim, C.G. Park, H. Kim, Jpn J. Appl. Phys. 49, 05FA11 (2010)Google Scholar
  136. 136.
    G.A. Ten Eyck, S. Pimangang, J.S. Juneja, H. Bakhru, T.M. Lu, G.C. Wang, Chem. Vap. Dep. 13, 307 (2007)Google Scholar
  137. 137.
    N.E. Lay, G.A.T. Eyck, D.J. Duquette, T.M. Lu, Electrochem. Solid State Lett. 10, D13 (2007)Google Scholar
  138. 138.
    H. Wojcik, U. Merkel, A. Jahn, K. Richter, M. Junige, C. Klein, J. Gluch, M. Albert, F. Munnik, C. Wenzel, J.W. Bartha, Microelectron. Eng. 88, 641 (2011)Google Scholar
  139. 139.
    N. Leick, R.O.F. Verkuijlen, L. Lamagna, E. Langereis, S. Rushworth, F. Roozeboom, M.C.M. van de Sanden, W.M.M. Kessels, J. Vac. Sci. Technol. A 29, 021016 (2011)Google Scholar
  140. 140.
    W. Sari, T.K. Eom, S.H. Kim, H. Kim, J. Electrochem. Soc. 158, D42 (2011)Google Scholar
  141. 141.
    H. Kim, S.M. Rossnagel, Thin Solid Films 441, 311 (2003)ADSGoogle Scholar
  142. 142.
    H. Kim, C. Cabral, C. Lavoie, S.M. Rossnagel, J. Vac. Sci. Technol. 20, 1321 (2002)Google Scholar
  143. 143.
    S.M. Rossnagel, A. Sherman, F. Turner, J. Vac. Sci. Technol. B 18, 2016 (2000)Google Scholar
  144. 144.
    H. Kim, S.M. Rossnagel, J. Vac. Sci. Technol. 20, 802 (2002)ADSGoogle Scholar
  145. 145.
    S.E. Potts, L. Schmalz, M. Fenker, B. Diaz, J. Swiatowska, V. Maurice, A. Seyeux, P. Marcus, G. Radnoczi, L. Toth, W.M.M. Kessels, J. Electrochem. Soc. 158, C132 (2011)Google Scholar
  146. 146.
    W.S. Kim, D.Y. Moon, B.W. Kang, J.W. Park, J.G. Park, J. Korean Phys. Soc. 55, 55 (2009)ADSGoogle Scholar
  147. 147.
    R. Lossy, H. Gargouri, M. Arens, J. Würfl, J. Vac. Sci. Technol. A 31, 01A140 (2013)Google Scholar
  148. 148.
    G.X. Liu, F.K. Shan, W.J. Lee, B.C. Shin, S.C. Kim, H.S. Kim, C.R. Cho, Integr. Ferroelectr. 94, 11 (2007)Google Scholar
  149. 149.
    N.J. Seong, E.T. Kim, S.G. Yoon, Integr. Ferroelectr. 74, 181 (2005)Google Scholar
  150. 150.
    A. Delabie, M. Caymax, S. Gielis, J.W. Maes, L. Nyns, M. Popovici, J. Swerts, H. Tielens, J. Peeters, S. Van Elshocht, Electrochem. Solid State Lett. 13, H176 (2010)Google Scholar
  151. 151.
    W.J. Maeng, G.H. Gu, C.G. Park, K. Lee, T. Lee, H. Kim, J. Electrochem. Soc. 156, G109 (2009)Google Scholar
  152. 152.
    S.B.S. Heil, J.L. van Hemmen, C.J. Hodson, N. Singh, J.H. Klootwijk, F. Roozeboom, M.C.M. van de Sanden, W.M.M. Kesseles, J. Vac. Sci. Technol. A 25, 1357 (2007)Google Scholar
  153. 153.
    P.K. Park, J.S. Roh, B.H. Choi, S.W. Kang, Electrochem. Solid State Lett. 9, F34 (2006)Google Scholar
  154. 154.
    W.H. Kim, W.J. Maeng, K.J. Moon, J.M. Myong, H. Kim, Thin Solid Films 519, 362 (2010)ADSGoogle Scholar
  155. 155.
    B.Y. Kim, M.G. Ko, E.J. Lee, M.S. Hong, Y.J. Jeon, J.W. Park, J. Korean Phys. Soc. 49, 1303 (2006)Google Scholar
  156. 156.
    S.J. Won, S. Suh, M.S. Huh, H.J. Kim, IEEE Electron. Device Lett. 31, 857 (2010)ADSGoogle Scholar
  157. 157.
    J.W. Lim, S.J. Yun, J.H. Lee, ETRI J. 27, 118 (2005)Google Scholar
  158. 158.
    D.H. Kim, S.W. Kim, S.B. Lee, S.H. Hong, Sens. Actuat. B Chem. 147, 653 (2010)Google Scholar
  159. 159.
    W.J. Maeng, J.W. Lee, J.M. Myong, H. Kim, Jpn J. Appl. Phys. 46, 3224 (2007)ADSGoogle Scholar
  160. 160.
    N.G. Kubala, C.A. Wolden, Thin Solid Films 518, 6733 (2010)ADSGoogle Scholar
  161. 161.
    C.S. Lee, J. Kim, G.H. Gu, D.H. Jo, C.G. Park, W. Choi, H. Kim, Thin Solid Films 518, 4757 (2010)ADSGoogle Scholar
  162. 162.
    S. Kim, S.L. Brown, S.M. Rossnagel, J. Bruley, M. Copel, M.J.P. Hopstaken, V. Narayanan, M.M. Frank, J. Appl. Phys. 107, 054102 (2010)ADSGoogle Scholar
  163. 163.
    W.J. Jeon, H.S. Chung, D. Joo, S.W. Kang, Electrochem. Solid State Lett. 11, H19 (2008)Google Scholar
  164. 164.
    J. Musschoot, D. Deduytsche, H. Poelman, J. Haemers, R.L. Van Meirhaeghe, S. Van den Berghe, C. Detavernier, J. Electrochem. Soc. 156, P122 (2009)Google Scholar
  165. 165.
    S.K. Kwon, D.W. Kim, Y.H. Jung, B.J. Lee, J. Korean Phys. Soc. 55, 999 (2009)ADSGoogle Scholar
  166. 166.
    D.L. Zhao, D.A. Mourey, T.N. Jackson, IEEE Electron. Device Lett. 31, 323 (2010)ADSGoogle Scholar
  167. 167.
    S.E. Potts, C.J. Carmalt, C.S. Blackman, F. Abou-Chahine, N. Leick, W.M.M. Kessels, H.O. Davies, P.N. Heys, Inorg. Chim. Acta 363, 1077 (2010)Google Scholar
  168. 168.
    Y. Tak, K. Yong, Surf. Rev. Lett. 12, 215 (2005)Google Scholar
  169. 169.
    S.J. Yun, J.W. Lim, J.H. Lee, Electrochem. Solid State Lett. 7, F81 (2004)Google Scholar
  170. 170.
    S.J. Yun, J.B. Koo, J.W. Lim, S.H. Kim, Electrochem. Solid State Lett. 10, H90 (2007)Google Scholar
  171. 171.
    S.M. George, B. Yoon, A.A. Dameron, Acc. Chem. Res. 42, 498 (2009)Google Scholar
  172. 172.
    S.M. George, B. Yoon, R.A. Hall, A.I. Abdulagatov, Z.M. Gibbs, Y. Lee, D. Seghete, B.H. Lee, in Atomic Layer Deposition of Nanostructured Materials, edited by N. Pinna, M. Knez (Wiley-VCH, 2012), pp. 83–107Google Scholar
  173. 173.
    S.M. George, The Strem Chemiker 25, 13 (2011)Google Scholar
  174. 174.
    Y. Du, S.M. George, J. Phys. Chem. C 111, 8509 (2007)Google Scholar
  175. 175.
    A.A. Dameron, D. Seghete, B.B. Burton, S.D. Davidson, A.S. Cavanagh, J.A. Bertrand, S.M. George, Chem. Mater. 20, 3315 (2008)Google Scholar
  176. 176.
    C.-Y. Kao, J.-W. Yoo, Y. Min, A.J. Epstein, ACS Appl. Mater. Interfaces 4, 137 (2012)Google Scholar
  177. 177.
    K.-S. Yoon, K.-S. Han, M.-M. Sung, Nano. Res. Lett. 7, 71 (2012)Google Scholar
  178. 178.
    B. Gong, Q. Peng, G.N. Parsons, J. Phys. Chem. B 115, 5930 (2011)Google Scholar
  179. 179.
    T. Yoshimura, S. Tatsuura, W. Sotoyama, Appl. Phys. Lett. 59, 482 (1991)ADSGoogle Scholar
  180. 180.
    T. Yoshimura, S. Tatsuura, W. Sotoyama, A. Metsuura, T. Hayano, Appl. Phys. Lett. 60, 268 (1992)ADSGoogle Scholar
  181. 181.
    N.M. Adarnczyk, A.A. Dameron, S.M. George, Langmuir 24, 2081 (2008)Google Scholar
  182. 182.
    W.J. Potscavage, S. Yoo, B. Domercq, B. Kippelen, Appl. Phys. Lett. 90, 253511 (2007)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rüdiger Foest
    • 1
  • Martin Schmidt
    • 1
  • Hassan Gargouri
    • 2
  1. 1.Leibniz Institute for Plasma Science and TechnologyGreifswaldGermany
  2. 2.Sentech Instruments GmbHBerlinGermany

Personalised recommendations