Hypergravity effects on glide arc plasma


The behaviour of a special type of electric discharge – the gliding arc plasma – has been investigated in hypergravity (1g–18g) using the Large Diameter Centrifuge (LDC) at ESA/ESTEC. The discharge voltage and current together with the videosignal from a fast camera have been recorded during the experiment. The gliding of the arc is governed by hot gas buoyancy and by consequence, gravity. Increasing the centrifugal acceleration makes the glide arc movement substantially faster. Whereas at 1g the discharge was stationary, at 6g it glided with 7 Hz frequency and at 18g the gliding frequency was 11 Hz. We describe a simple model for the glide arc movement assuming low gas flow velocities, which is compared to our experimental results.

This is a preview of subscription content, access via your institution.


  1. 1.

    K.G. Balmain, J. Electrost. 20, 95 (1987)

    Article  Google Scholar 

  2. 2.

    H. Huang, W. Pan, C. Wu, IEEE Trans. Plasma Sci. 39, 2934 (2011)

    ADS  Article  Google Scholar 

  3. 3.

    M. Baeva, R. Kozakov, S. Gorchakov, D. Uhrlandt, Plasma Sources Sci. Technol. 21, 055027 (2012)

    ADS  Article  Google Scholar 

  4. 4.

    A. Fridman, S. Nester, L.A. Kennedy, A. Saveliev, O. Mutaf-Yardimci, Prog. Energy Comb. Sci. 25, 211 (1998)

    Article  Google Scholar 

  5. 5.

    X. Tu, L. Yu, J.H. Yan, K.F. Cen, B.G. Chéron, Phys. Plasmas 16, 113506 (2009)

    ADS  Article  Google Scholar 

  6. 6.

    A. Czernichowski, Pure Appl. Chem. 66, 1301 (1994)

    Article  Google Scholar 

  7. 7.

    J. Janča, A. Czernichowski, Surf. Coat. Technol. 98, 1112 (1998)

    Article  Google Scholar 

  8. 8.

    M. Steenbeck, Z. Tech. Phys. 18, 593 (1937)

    Google Scholar 

  9. 9.

    C. Kenty, J. Appl. Phys. 10, 714 (1939)

    ADS  Article  Google Scholar 

  10. 10.

    V. Pletser, Acta Astronaut. 55, 829 (2004)

    ADS  Article  Google Scholar 

  11. 11.

    G.D. Tan, T. Mieno, Thin Solid Films 518, 3541 (2010)

    ADS  Article  Google Scholar 

  12. 12.

    O. Kawanami, N. Sano, T. Miyamoto, A. Mineshige, T. Murakami, H. Harima, Appl. Phys. A 89, 929 (2007)

    ADS  Article  Google Scholar 

  13. 13.

    J.M. Alford, G.R. Mason, D.A. Feikema, Rev. Sci. Instrum. 77, 074101 (2006)

    ADS  Article  Google Scholar 

  14. 14.

    W.W. Stoffels, A.J. Flikweert, T. Nimalasuriya, J. Van der Mullen, G.M.W. Kroesen, M. Haverlag, Pure Appl. Chem. 78, 1239 (2006)

    Article  Google Scholar 

  15. 15.

    A.J. Flikweert, T. Nimalasuriya, G.M.W. Kroesen, M. Haverlag, W.W. Stoffels, Microgravity Sci. Technol. 21, 319 (2009)

    Article  Google Scholar 

  16. 16.

    T. Nimalasuriya, A.J. Flikweert, M. Haverlag, P.C.M. Kemps, G.M.W. Kroesen, W.W. Stoffels, J. Van der Mullen, J. Phys. D 39, 2993 (2006)

    ADS  Article  Google Scholar 

  17. 17.

    C.R. Du et al., New J. Phys. 14, 073058 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    K. Takahashi, Y. Hayashi, S. Adachi, J. Appl. Phys. 110, 013307 (2011)

    ADS  Article  Google Scholar 

  19. 19.

    J. Beckers, T. Ockenga, M. Wolter, W.W. Stoffels, J. van Dijk, H. Kersten, G.M.W. Kroesen, Phys. Rev. Lett. 106, 115002 (2011)

    ADS  Article  Google Scholar 

  20. 20.

    J.J.W.A. van Loon, J. Krause, H. Cunha, J. Goncalves, H. Almeida, P. Schiller, Proc. Of the Life in Space for Life on Earth Symposium, Angers, France, 2008, ESA SP-663

  21. 21.

    D.B. Ingham, I. Pop, Convective heat transfer: mathematical and computational modelling of viscous fluids and porous media (Access Online via Elsevier, Elsevier, 2001)

  22. 22.

    Z.W. Sun, J.J. Zhu, Z.S. Li, M. Aldén, F. Leipold, M. Salewski, Y. Kusano, Opt. Express 21, 6028 (2013)

    ADS  Article  Google Scholar 

  23. 23.

    Z. Bo, J.H. Yan, X.D. Li, Y. Chi, B. Chéron, K.F. Cen, Plasma Chem. Plasma Process. 27, 691 (2007)

    Article  Google Scholar 

  24. 24.

    S. Pellerin, F. Richard, J. Chapelle, J.M. Cormier, K. Musio, J. Phys. D 33, 2407 (2000)

    ADS  Article  Google Scholar 

  25. 25.

    F. Richard, J.M. Cormier, S. Pellerin, J. Chapelle, J. Appl. Phys. 79, 2245 (1996)

    ADS  Article  Google Scholar 

  26. 26.

    R.K. Finn, J. Appl. Phys. 24, 771 (1953)

    ADS  Article  Google Scholar 

  27. 27.

    M. Bogaczyk, R. Wild, L. Stollenwerk, H.E. Wagner, J. Phys. D 45, 465202 (2012)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jiří Šperka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Šperka, J., Souček, P., Van Loon, J.J.W.A. et al. Hypergravity effects on glide arc plasma. Eur. Phys. J. D 67, 261 (2013). https://doi.org/10.1140/epjd/e2013-40408-7

Download citation


  • Plasma Physics