Skip to main content
Log in

Electron attachment to oxygen in nitrogen buffer gas at atmospheric pressure

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have carried out experimental and theoretical studies of three body electron attachment (TBEA) to O2 in N2/O2 mixtures. We have applied three different experimental methods to determine the apparent rate constant k for TBEA to O2 for reduced electric fields E/ n from 0.5 Td up to 4.5 Td and O2 concentrations from 0.02% up to 3%. From the apparent rate constant k we have evaluated three body rate constant for electron attachment to O2 in pure O2 \(\left( {k_{O_2 } } \right)\) and in pure N2 \(\left( {k_{N_2 } } \right)\). The comparison of present data with former studies shows that the former values of \(k_{N_2 }\) overestimated the efficiency of this reaction, while in case of \(k_{O_2 }\) we have found agreement with earlier studies. We have solved numerically the Boltzmann equation of the electrons and calculated the values of k, \(k_{N_2 }\) and \(k_{O_2 }\) using well established cross sections. Using the known collision cross section set for TBEA to O2, very good agreement between calculated and measured results for \(k_{O_2 }\) was found, while in the case of k and \(k_{N_2 }\) we had to introduce a scaling function, which describes the decrease of the efficiency of TBEA to O2 in presence of N2 and the dependence of the scaling function on E/n was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.G. Christophorou, Radiat. Phys. Chem. 12, 19 (1978)

    Article  ADS  Google Scholar 

  2. F. Bloch, N.E. Bradbury, Phys. Rev. 48, 689 (1935)

    Article  ADS  MATH  Google Scholar 

  3. L.M. Chanin, A.V. Phelps, M.A. Biondi, Phys. Rev. 128, 219 (1962)

    Article  ADS  Google Scholar 

  4. NIST Chemistry WebBook, webbook.nist.gov

  5. D.L. McCorkle, L.G. Christophorou, V.E. Anderson, J. Phys. B 5, 1211 (1972)

    Article  ADS  Google Scholar 

  6. J. de Urquijo, A. Bekstein, O. Ducasse, G. Ruíz-Vargas, M. Yousfi, M. Benhenni, Eur. Phys. J. D 55, 637 (2009)

    Article  ADS  Google Scholar 

  7. D. Spence, G.J. Schulz, Phys Rev. A 5, 724 (1972)

    Article  ADS  Google Scholar 

  8. J.L. Pack, A.V. Phelps, J. Chem. Phys. 44, 1870 (1966)

    Article  ADS  Google Scholar 

  9. G.S. Hurst, T.E. Bortner, Phys. Rev. 114, 116 (1959)

    Article  ADS  Google Scholar 

  10. J.A. Stockdale, L.G. Christophorou, G.S. Hurst, J. Chem. Phys. 47, 3267 (1967)

    Article  ADS  Google Scholar 

  11. R.E. Goans, L.G. Christophorou, J. Chem. Phys. 60, 1036 (1974)

    Article  ADS  Google Scholar 

  12. H. Shimamori, Y. Hatano, Chem. Phys. 12, 439 (1976)

    Article  ADS  Google Scholar 

  13. H. Shimamori, Y. Hatano, Chem. Phys. 21, 187 (1977)

    Article  ADS  Google Scholar 

  14. H. Shimamori, R.W. Fessenden, J. Chem. Phys. 74, 453 (1981)

    Article  ADS  Google Scholar 

  15. F.K. Truby, Phys. Rev. A 6, 671 (1972)

    Article  ADS  Google Scholar 

  16. T.D. Märk, K. Leiter, W. Ritter, A. Stamatovic, Phys. Rev. Lett. 55, 2559 (1985)

    Article  ADS  Google Scholar 

  17. S. Matejcik, A. Kiendler, P. Stampfli, A. Stamatovic, T.D. Märk, Phys. Rev. Lett. 77, 3771 (1996)

    Article  ADS  Google Scholar 

  18. S. Barsotti, E. Leber, M.-W. Ruf, H. Hotop, Int. J. Mass Spectrom. 220, 313 (2002)

    Article  ADS  Google Scholar 

  19. M. Tabrizchi, A. Abedi, J. Phys. Chem. A 108, 6319 (2004)

    Article  Google Scholar 

  20. H. Feng, W. Niu, H. Han, C. Huang, H. Wang, J. Matuska, M. Sabo, S. Matejcik, H. Jiang, Y. Chu, Int. J. Mass Spectrom. 305, 30 (2011)

    Article  ADS  Google Scholar 

  21. C.A. Mayhew, A.D.J. Critchley, D.C. Howse, V. Mikhailov, M.A. Parkes, Eur. Phys. J. D 35, 307 (2005)

    Article  ADS  Google Scholar 

  22. J. Kopyra, J. Wnorowska, M. Foryś, I. Szamrej, Int. J. Mass Spectrom. 268, 60 (2007)

    Article  ADS  Google Scholar 

  23. M. Stano, N. Pinhão, D. Loffhagen, M. Kučera, Z. Donkó, Š. Matejčík, Eur. Phys. J. D 65, 489 (2011)

    Article  ADS  Google Scholar 

  24. N.E. Bradbury, R.A. Nielsen, Phys. Rev. 49, 388 (1936)

    Article  ADS  Google Scholar 

  25. L.B. Loeb, Basic Processes in Gaseous Electronics (University of California Press, Berkeley, 1955)

  26. G.G. Raju, Gaseous Electronics (CRC Taylor & Francis, Boca Raton, 2006)

  27. H.R. Shamlouei, M. Tabrizchi, Int. J. Mass Spectrom. 273, 78 (2008)

    Article  ADS  Google Scholar 

  28. H. Leyh, D. Loffhagen, R. Winkler, Comput. Phys. Commun. 113, 33 (1998)

    Article  ADS  MATH  Google Scholar 

  29. W.L. Morgan, J.P. Boeuf, L.C. Pitchford, The Siglo Data base, CPAT and Kinema Software, http://www.siglo-kinema.com

  30. A.V. Phelps, http://jilawww.colorado.edu/∼avp/

  31. M. Elford, S. Buckman, M. Brunger, in Interactions of Photons and Electrons with Molecules (Landolt-Börnstein), edited by Y. Itikawa (Springer, Berlin, 2003), Vol. 17C, Chap. 6.3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Stano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kučera, M., Stano, M., Wnorowska, J. et al. Electron attachment to oxygen in nitrogen buffer gas at atmospheric pressure. Eur. Phys. J. D 67, 234 (2013). https://doi.org/10.1140/epjd/e2013-40401-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40401-2

Keywords

Navigation