Enhanced ultraviolet-blue emission and Raman modes in ZnO:Cr2O3 composite nanoparticles

Abstract

We present secondary phase identification studies on Cr doped ZnO nanoparticles prepared by the sol-gel method. X-ray diffraction analysis confirms the formation of chromium oxides and there is found to be an increase of lattice parameter with thermal annealing. Scanning electron microscopic studies show the increase in the crystalline nature and particle size. Optical absorption measurements of the as prepared sample exhibit a strong band at 356 nm due to the free exciton absorption of the ZnO nanoparticles. An absorption band at 277 nm is due to the 3T13T2 transition in Cr4+ ions which appears only for the annealed samples. Photoluminescence studies show that deep level emission is completely suppressed after Cr2O3 formation/thermal annealing. Raman and FTIR spectra reveal formation of the Cr2O3 phase. Thermal annealing leads to the increase of crystalline nature which gives an enhancement to the Raman modes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D.C. Look, B. Claflin, Y.I. Alivov, S.J. Park, Phys. Stat. Sol. 201, 2203 (2004)

    ADS  Article  Google Scholar 

  2. 2.

    Y.S. Choi, J.W. Kang, D.K. Hwang, S.J. Park, IEEE Trans. Electron Devices 57, 26 (2010)

    ADS  Article  Google Scholar 

  3. 3.

    A.N. Georgobiani, J. Lumin. 48, 839 (1991)

    Article  Google Scholar 

  4. 4.

    K.L. Chopra, P.D. Paulson, V. Dutta, Prog. Photovolt.: Res. Appl. 12, 69 (2004)

    Article  Google Scholar 

  5. 5.

    R.L. Hoffman, B.J. Norris, J.F. Wage, Appl. Phys. Lett. 82, 733 (2003)

    ADS  Article  Google Scholar 

  6. 6.

    Dhananjay, S.B. Krupanidhi, J. Appl. Phys. 101, 123717 (2007)

    ADS  Article  Google Scholar 

  7. 7.

    R.L. Hoffman, J. Appl. Phys. 95, 5813 (2004)

    ADS  Article  Google Scholar 

  8. 8.

    Y. Yang, Y. Jin, H. He, Q. Wang, Y. Tu, H. Lu, Z. Ye, J. Am. Chem. Soc. 132, 13381 (2010)

    Article  Google Scholar 

  9. 9.

    B. Karthikeyan, C.S. Suchand Sandeep, T. Pandiyarajan, P. Venkatesan, R. Philip, Appl. Phys. Lett. 95, 023118 (2009)

    Article  Google Scholar 

  10. 10.

    Y.S. Wang, P.J. Thomas, P.O. Brien, J. Phys. Chem. B 110, 21412 (2006)

    Google Scholar 

  11. 11.

    S. Sapra, D.D. Sarma, Phys. Rev. B 69, 125304 (2004)

    ADS  Google Scholar 

  12. 12.

    G. Pozina, L.L. Yang, Q.X. Zhao, L. Hultman, P.G. Lagoudakis, Appl. Phys. Lett. 97, 131909 (2010)

    ADS  Google Scholar 

  13. 13.

    Y.C. Lee, S.Y. Hu, W. Water, K.K. Tiong, Z.C. Feng, Y.T. Chen, J.C. Huang, J.W. Lee, C.C. Huang, J.L. Shen, M.H. Cheng, J. Lumin. 129, 148 (2009)

    Google Scholar 

  14. 14.

    J. Kim, J.H. Yun, S.W. Jee, Y.C. Park, M. Ju, S. Han, Y. Kim, J.H. Kim, W.A. Anderson, J.H. Lee, J. Yi, Mater. Lett. 65, 786 (2011)

    Google Scholar 

  15. 15.

    C.W. Zou, X.D. Yan, R.Q. Chen, Z.Y. Wu, A. Alyamani, W. Gao, Appl. Phys. Lett. 98, 111904 (2011)

    ADS  Google Scholar 

  16. 16.

    L. Li, W. Wang, H. Liu, X. Liu, Q. Song, S. Ren, J. Phys. Chem. C 113, 8460 (2009)

    Google Scholar 

  17. 17.

    K. Jayanthi, S. Chawla, A.G. Joshi, Z.H. Khan, R.K. Kotnala, J. Phys. Chem. C 114, 18429 (2010)

    Google Scholar 

  18. 18.

    L. Schneider, S.V. Zaitsev, W. Jin, A. Kompch, M. Winterer, M. Acet, G. Bacher, Nanotechnology 20, 135604 (2009)

    ADS  Google Scholar 

  19. 19.

    Y.Y. Xi, A.M.C. Ng, Y.F. Hsu, A.B. Djurišić, B.Q. Huang, L. Ge, X.Y. Chen, W.K. Chan, H.L. Tam, K.W. Cheah, Appl. Phys. Lett. 94, 203502 (2009)

    ADS  Google Scholar 

  20. 20.

    Y. Liu, J. Yang, Q. Guan, L. Yang, H. Liu, Y. Zhang, Y. Wang, D. Wang, J. Lang, Y. Yang, L. Fei, M. Wei, Appl. Surf. Sci. 256, 3559 (2010)

    ADS  Google Scholar 

  21. 21.

    C.F. Fu, L.F. Han, C. Liu, Phys. Stat. Sol. A 1, 5 (2011)

    Google Scholar 

  22. 22.

    S.A. Pianaro, E.C. Pereira, L.O.S. Bulhoes, E. Longo, J.A. Varela, J. Mater. Sci. 30, 133 (1995)

    ADS  Google Scholar 

  23. 23.

    Y.H. Kim, H. Kawamura, M. Nawata, J. Mater. Sci. 32, 1665 (1997)

    ADS  Google Scholar 

  24. 24.

    Y. Shimizu, F.C. Li, Y. Takao, M. Egashira, J. Am. Ceram. Soc. 81, 1633 (1998)

    Google Scholar 

  25. 25.

    Y. Kubowa, O. Oyama, J. Phys. Chem. 60, 833 (1958)

    Google Scholar 

  26. 26.

    S. Jacob, A.U. Santhoskumar, K.P. Bhuvanan, K. Palanivelu, S.K. Nayak, Mater. Sci. Semicond. Process. 15, 326 (2012)

    Google Scholar 

  27. 27.

    I. Satoh, T. Kobayashi, K. Katayama, T. Okada, T. Itoh, Appl. Phys. A 79, 1445 (2004)

    ADS  Google Scholar 

  28. 28.

    X-Ray Diffraction: A Practical Approach, edited by C. Suryanarayana, M. Grant Norton (Plenum Press, 1998), p. 213

  29. 29.

    X.S. Wang, Z.C. Wu, J.F. Webb, Z.G. Liu, Appl. Phys. A 77, 561 (2003)

    ADS  Google Scholar 

  30. 30.

    H.J. Gulley-Stahl, W.L. Schmidt, H.A. Bullen, J. Mater. Sci. 43, 7066 (2008)

    ADS  Google Scholar 

  31. 31.

    S. Musi, M. Maljkovi, S. Popovi, R. Trojko, Croat. Chem. Acta 72, 789 (1999)

    Google Scholar 

  32. 32.

    P.G. Wenthold, K.L. Jonas, W.C. Lineberger, J. Chem. Phys. 23, 106 (1997)

    Google Scholar 

  33. 33.

    G. Gouadec, P. Colomban, Prog. Cryst. Growth Charact. Mater. 53, 1 (2007)

    Google Scholar 

  34. 34.

    X. Wang, J. Xu, X. Yu, K. Xue, J. Yu, X. Zhao, Appl. Phys. Lett. 91, 031908 (2007)

    ADS  Google Scholar 

  35. 35.

    J. Yang, W.N. Martens, R.L. Frost, J. Raman Spectrosc. 42, 1142 (2011)

    ADS  Google Scholar 

  36. 36.

    J. Yang, H. Cheng, W.N. Martens, R.L. Frost, J. Raman Spectrosc. 42, 1069 (2011)

    ADS  Google Scholar 

  37. 37.

    A.B. Djurisic, Y.H. Leung, Small 2, 944 (2006)

    Google Scholar 

  38. 38.

    S. Ram, J. Mater. Sci. 38, 643 (2003)

    ADS  Google Scholar 

  39. 39.

    R. Cusco, E.A. Llado, J. Ibanez, L. Artus, J. Jimenez, B. Wang, M.J. Callahan, Phys. Rev. B 75, 165202 (2007)

    ADS  Google Scholar 

  40. 40.

    S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, J. Appl. Phys. 98, 013505 (2005)

    ADS  Google Scholar 

  41. 41.

    H. Tampo, H. Shibata, K. Maejima, A. Yamad, K. Matsubara, P. Fons, S. Niki, T. Tainaka, Y. Chiba, H. Kanie, Appl. Phys. Lett. 91, 261907 (2007)

    ADS  Google Scholar 

  42. 42.

    F. Oba, M. Choi, A. Togo, I. Tanaka, Sci. Technol. Adv. Mater. 12, 034302 (2011)

    Google Scholar 

  43. 43.

    C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Choa, J. Appl. Phys. 105, 013502 (2009)

    ADS  Google Scholar 

  44. 44.

    B.H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561 (2010)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Karthikeyan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pandiyarajan, T., Baesso, M. & Karthikeyan, B. Enhanced ultraviolet-blue emission and Raman modes in ZnO:Cr2O3 composite nanoparticles. Eur. Phys. J. D 68, 28 (2014). https://doi.org/10.1140/epjd/e2013-40363-3

Download citation

Keywords

  • Clusters and Nanostructures