Skip to main content
Log in

Synthesis of colloidal CuInSe2 nanoparticles by electrical spark discharge in liquid

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This work presents a low-cost, non-vacuum, and facile process for fabrication of CuInSe2 (CIS) nanoparticles using electrical discharge treatment of mixture of copper, indium, and selenium powders between two tungsten electrodes immersed in pure ethanol. The synthesized particles were characterized by UV-Vis-NIR absorption, X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), Raman spectroscopy, transmission and scanning electron microscopy (TEM and SEM). TEM images exhibited that the final product is mainly composed of a large amount of primary nanoparticles typically 10–40 nm in diameter. The band gap energy value of the nanoparticles was estimated to be around 1.2 eV. The XRD pattern of the as-prepared samples besides the main peaks of chalcopyrite tetragonal CIS showed the diffraction peaks which could be attributed to intermediate phases. To omit the intermediate phases and reach to pure CIS nanoparticles the as-prepared in electrical discharge samples were annealed in vacuum at the temperature of 700 °C during 90 min. The XRD and SEM analysis results of annealed samples clearly indicated that chalcopyrite CuInSe2 particles with good crystallinity and near stoichiometric atomic composition were obtained. The composition and crystalline structure of the product was also confirmed by the room-temperature Raman spectrum showing an intense peak at 172 cm-1 corresponding to the A1 phonon mode of tetragonal CuInSe2 chalcopyrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.P. Pilini, J. Phys. Chem. C 111, 9019 (2007)

    Article  Google Scholar 

  2. K.P. Jayadevan, T.Y. Tseng, Nanosci. Nanotechnol. 5, 1768 (2005)

    Article  Google Scholar 

  3. J. Park, J. Joo, S. Kwon, Y. Jang, T. Hyeon, Chem. Int. Ed. 46, 4630 (2007)

    Article  Google Scholar 

  4. V.I. Klimov, S.A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J.A. McGuire, A. Piryatinski, Nature 447, 441 (2007)

    Article  ADS  Google Scholar 

  5. B. Sun, H. Sirringhaus, Nano Lett. 5, 2408 (2005)

    Article  ADS  Google Scholar 

  6. C. Li, J. Ly, B. Lei, W. Fan, D. Zhang, J. Han, M. Meyyappan, M. Thomson, C. Zhou, J. Phys. Chem. B 108, 9646 (2004)

    Article  Google Scholar 

  7. A.B. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, Nano Lett. 7, 2183 (2007)

    Article  ADS  Google Scholar 

  8. S. Zhang, S. Wei, A. Zunger, H. Katayama-Yoshida, J. Phys. Rev. B 57, 9642 (1998)

    Article  ADS  Google Scholar 

  9. S.L. Castro, S.G. Bailey, R.P. Raffaelle, K.K. Banger, A.F. Hepp, J. Chem. Matter 15, 3142 (2003)

    Article  Google Scholar 

  10. M. Varela, E. Bertran, M. Manchon, J. Esteve, J.L. Morenza, J. Appl. Phys. 19, 127 (1986)

    Google Scholar 

  11. A.A. McDaniel, J.W.P. Hsu, A.M. Gabor, Appl. Phys. Lett. 70, 3555 (1997)

    Article  ADS  Google Scholar 

  12. H. Grisaru, O. Palchik, A. Gedanken, A. Palchik, V. Slifkin, A. Weiss, Inorg. Chem. 42, 7148 (2003)

    Article  Google Scholar 

  13. A.R. Jeong, W. Jo, C. Ko, M. Han, S.J. Kang, M. Kim, D.Y. Park, H. Cheong, H.J. Yun, J. Alloys Compd. 509, 8073 (2011)

    Article  Google Scholar 

  14. T. Andregs, M. Galina, S. Aleksandrs, K. Dongsoo, K. Julija, O. Andres, T. Jurigs, J. Mater. Sci. Appl. Chem. 21, 79 (2011)

    Google Scholar 

  15. H. Ye, H.S. Park, V.A. Akhavan, B.W. Goodfellow, M.G. Panthani, B.A. Korgel, A.J. Bard, J. Phys. Chem. C 115, 234 (2011)

    Article  Google Scholar 

  16. M. Najafi, M.R. Vaezi, S.K. Sadrnezhaad, J. Ceram. Process. Res. 12, 695 (2011)

    Google Scholar 

  17. C. Huiyu, M. Seong, W. Dong, J. Nanoscale Res. Lett. 5, 217 (2010)

    Article  Google Scholar 

  18. K. Nose, T. Omata, S. Otsuka, J. Phys. Chem. C 113, 3455 (2009)

    Article  Google Scholar 

  19. V. Burakov, A. Butsen, V. Hamisch, P. Misakov, E. Nevar, M. Rosenbaum, N. Savastenko, N.V. Tarasenko, J. Nanopart. Res. 10, 881 (2008)

    Article  Google Scholar 

  20. G.W. Yang, Prog. Mater. Sci. 52, 648 (2007)

    Article  Google Scholar 

  21. N. Kavkar, Mater. Sol. Cells 52, 183 (1998)

    Article  Google Scholar 

  22. Z. Haizheng, L. Yunchao, Y. Mingfu, Z. Zhongzheng, Z. Yi, Y. Chunhe, L. Yongfang, Nanotechnology 18, 25602 (2007)

    Article  Google Scholar 

  23. V. Colvin, M. Schlamp, V.L. Goldstein, A. Alivisatos, Nature 370, 354 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mardanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mardanian, M., Nevar, A., Nedel’ko, M. et al. Synthesis of colloidal CuInSe2 nanoparticles by electrical spark discharge in liquid. Eur. Phys. J. D 67, 208 (2013). https://doi.org/10.1140/epjd/e2013-40278-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40278-y

Keywords

Navigation