Skip to main content
Log in

Charging kinetics of dust particles in a non-Maxwellian Lorentzian plasma

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Charging kinetics of uniformly dispersed spherical dust particles in a non-Maxwellian plasma, characterized by a Lorentzian (κ) distribution function of electrons/ions has been developed; the formulation is based on the uniform potential theory, applicable to the dust particles characterized by a size distribution function. Owing the openness character of the complex plasmas, the charging kinetics has been developed on the basis of number and energy balance of the plasma constituents along with the charge balance over the dust particles; the neutrality of the complex plasma is a consequence of the number balance of electrons/ions and charge balance on the dust particles. A more rigorous approach, proposed by Mott-Smith and Langmuir [Phys. Rev. 28, 727 (1926)] has been adopted to derive the expressions for the electron/ion accretion current over the dust surface and corresponding mean energy in a non-Maxwellian Lorentzian plasma. Further the formulation has been implemented to determine the secondary electron emission (SEE) from the spherical dust particles in such plasmas. The departure of the results for the Lorentzian plasma, from that in the case of Maxwellian plasma has been graphically illustrated and discussed. It is seen that the Lorentzian nature of the plasma and the inclusion of the collective effect of the dust particles significantly affects the dust charge and other plasma parameters; the formulation and understanding of the charging kinetics in a Lorentzian plasma have implications for both the physics (e.g. grain growth and disruption) and the dynamics of dust in laboratory and space environment, when the dimension of the plasma are much larger than the diffusion length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Sodha, S. Guha, Physics of Colloidal Plasma, in Advanced Plasma Physics, edited by A. Simon, W.B. Thomas (Interscience, 1971), Vol. 4, p. 219

  2. E.C. Whipple, Rep. Prog. Phys. 44, 1197 (1981)

    Article  ADS  Google Scholar 

  3. C.K. Goertz, Rev. Geophys. 27, 271 (1989)

    Article  ADS  Google Scholar 

  4. T.G. Northrop, Phys. Scr. 45, 475 (1992)

    Article  ADS  Google Scholar 

  5. V.N. Tsytovich, O. Havnes, Plasma Phys. Control. Fusion 15, 267 (1993)

    Google Scholar 

  6. J. Goree, Plasma Sources Sci. Technol. 3, 400 (1994)

    Article  ADS  Google Scholar 

  7. A.P. Nefedov, O.P. Petrov, V.E. Fortrov, Phys. Usp. 40, 1163 (1997)

    Article  ADS  Google Scholar 

  8. V.N. Tsytovich, Phys. Usp. 40, 53 (1997)

    Article  ADS  Google Scholar 

  9. Ch. Hollenstein, Plasma Phys. Control. Fusion 42, R93 (2000)

    Article  ADS  Google Scholar 

  10. D.A. Mendis, Plasma Sources Sci. Technol. 11, A219 (2002)

    Article  ADS  Google Scholar 

  11. V.E. Fortov, A.G. Khrapak, S.A. Khrapak, V.I. Molotkov, O.F. Petrov, Phys. Usp. 47, 447 (2004)

    Article  ADS  Google Scholar 

  12. V.E. Fortov, A.V. Ivlev, S.A. Khrapak, A.G. Khrapak, G.E. Morfill, Phys. Rep. 421, 1 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  13. P.K. Shukla, B. Eliasson, Rev. Mod. Phys. 81, 25 (2009)

    Article  ADS  Google Scholar 

  14. A. Bouchoule, Dusty Plasma: Physics, Chemistry and Technological Impacts in Plasma Processing (John Wiley & Sons, Singapore, 1999)

  15. P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002)

  16. S.V. Vladimirov, K. Ostrikov, A.A. Samarian, Physics and Applications of Complex Plasmas (Imperial College Press, London, 2005)

  17. V.N. Tsytovich, G.E. Morfill, S.V. Vladimirov, H.M. Thomas, Elementary Physics of Complex Plasmas (Springer, Berlin, 2008)

  18. A. Fridmann, L.A. Kennedy, Plasma Physics and Engineering (CRC Press, Taylor and Francis Group, New York, 2009)

  19. Barkan, N. D’Angelo, R.L. Merlino, Phys. Rev. Lett. 73, 3093 (1994)

    Article  ADS  Google Scholar 

  20. B. Walch, M. Horanyi, S. Robertson, IEEE Trans. Plasma Sci. 72, 97 (1994)

    Article  ADS  Google Scholar 

  21. B. Walch, M. Horanyi, S. Robertson, Phys. Rev. Lett. 75, 838 (1995)

    Article  ADS  Google Scholar 

  22. A. Sickafoose, J.E. Colwell, M. Horanyi, S. Robertson, Phys. Rev. Lett. 84, 6034 (2000)

    Article  ADS  Google Scholar 

  23. M. Rosenberg, D.A. Mendis, J. Geophys. Res. 97, 14773 (1992)

    Article  ADS  Google Scholar 

  24. D.A. Mendis, M. Rosenberg, Annu. Rev. Astr. Astrophys. 32, 419 (1994)

    Article  ADS  Google Scholar 

  25. D. Summers, R.M. Thorne, Phys. Fluids B 3, 1835 (1991)

    Article  ADS  Google Scholar 

  26. D. Summers, R.M. Thorne, Phys. Fluids B 3, 2117 (1991)

    Article  ADS  Google Scholar 

  27. S.K. Mishra, S. Misra, M.S. Sodha, Phys. Plasmas 18, 103708 (2011)

    Article  ADS  Google Scholar 

  28. M. Bacharis, M. Coppins, J.E. Allen, Plasma Sources Sci. Technol. 19, 025002 (2010)

    Article  ADS  Google Scholar 

  29. M. Meyer-Vernet, Astron. Astrophys. 105, 98 (1982)

    ADS  MATH  Google Scholar 

  30. M. Tribeche, P.K. Shukla, Phys. Plasmas 18, 103702 (2011)

    Article  ADS  Google Scholar 

  31. M.S. Sodha, S. Misra, S.K. Mishra, Phys. Plasmas 16, 123705 (2009)

    Article  ADS  Google Scholar 

  32. M.S. Sodha, S. Misra, S.K. Mishra, Phys. Plasmas 17, 049902 (2010)

    Article  ADS  Google Scholar 

  33. M.S. Sodha, S. Misra, S.K. Mishra, Plasma Sources Sci. Technol. 19, 045022 (2010)

    Article  ADS  Google Scholar 

  34. M.S. Sodha, S.K. Mishra, S. Misra, Phys. Plasmas 18, 023701 (2011)

    Article  ADS  Google Scholar 

  35. S.K. Mishra, S. Misra, M.S. Sodha, Phys. Plasmas 18, 023702 (2011)

    Google Scholar 

  36. H.M. Mott-Smith, I. Langmuir, Phys. Rev. 28, 727 (1926)

    Article  ADS  Google Scholar 

  37. S.K. Mishra, S. Misra, M.S. Sodha, Phys. Plasmas 20, 013702 (2013)

    Article  ADS  Google Scholar 

  38. M.S. Sodha, S. Mishra, S.K. Mishra, Phys. Plasmas 17, 113705 (2010)

    Article  ADS  Google Scholar 

  39. M.S. Sodha, S.K. Mishra, S. Misra, IEEE Trans. Plasma Sci. 39, 1141 (2011)

    Article  ADS  Google Scholar 

  40. S. Misra, S.K. Mishra, M.S. Sodha, MNRAS 423, 176 (2012)

    Article  ADS  Google Scholar 

  41. A.V. Gurevich, Nonlinear Phenomena in the Ionosphere (Springer, New York, 1978)

  42. I.P. Shkarofsky, T.W. Johnston, M.P. Bachynski, The Particle Kinetics of Plasmas (Addison-Wesley, New York, 1966)

  43. V.W. Chow, D.A. Mendis, M. Rosenberg, J. Geophys. Res. 98, 19065 (1993)

    Article  ADS  Google Scholar 

  44. A.L. Grasp, G.H. Jones, A. Juhasz, M. Horanyi, O. Havnes, Space Sci. Rev. 137, 435 (2008)

    Article  ADS  Google Scholar 

  45. E.J. Sternglass, Phys. Rev. 95, 345 (1954)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S., Misra, S. & Sodha, M. Charging kinetics of dust particles in a non-Maxwellian Lorentzian plasma. Eur. Phys. J. D 67, 210 (2013). https://doi.org/10.1140/epjd/e2013-40277-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40277-0

Keywords

Navigation