Skip to main content
Log in

Effect of CO and H adsorption on the compositional structure of binary nanoalloys via DFT modeling

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A theoretical approach to investigate the influence of CO and H adsorption on the compositional structure or chemical ordering of binary metal nanoclusters is applied to selected representative pairs: AuPd, PdPt, CuPt and PdRh. The truncated octahedral (TO) 38-atom cluster is chosen as a model of small fcc nanoclusters because its high-symmetry allows a simpler analysis and a reduced computational effort. A number of CO and H ligands (ranging from 1 to 8) are adsorbed on atop sites at the centre of (111) facets of the cluster, and the corresponding energetics are analyzed in detail. A strong tendency to segregation inversion from AuPd shell/core to core/shell is found upon CO adsorption, qualitatively very similar even though more pronounced than that found for the PdRh pair (where Pd plays the role of Au and Rh that of Pd). This effect is still present, but quantitatively modest, in PdPt. The value of the CO binding energy decreases in the sequence: Rh > Pt > Pd > Au, and is scarcely affected by the presence of neighbouring hetero-species (minor electronic effect). A clear electronic effect is instead found in the CuPt case, in which the strengthening of Pt-CO bonds when Cu neighbours surround the interacting Pt atom brings Cu from the centres to the edges of (111) facets in Pt-rich clusters upon CO adsorption. H adsorption brings about qualitatively similar effects, although to a much smaller degree, so that a definite segregation inversion is only predicted for the AuPd pair. The predicted trends are found to be in good agreement with available experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J. Andersson, F. Calle-Vallejo, J. Rossmeisl, I. Chorkendorff, J. Am. Chem. Soc. 131, 2404 (2009)

    Article  Google Scholar 

  2. J. Zhang, H. Jin, M.B. Sullivan, F.C.H. Lim, P. Wu, Phys. Chem. Chem. Phys. 11, 1441 (2009)

    Article  Google Scholar 

  3. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  4. L.O. Paz-Borbon, R.L. Johnston, G. Barcaro, A. Fortunelli, Eur. Phys. J. D 52, 131 (2009)

    Article  ADS  Google Scholar 

  5. H. Hakkinen, Chem. Soc. Rev. 37, 1847 (2008)

    Article  Google Scholar 

  6. F. Tao, M.E. Grass, Y. Zhang, D.R. Butcher, J.R. Renzas, Z. Liu, J.Y. Chung, B.S. Mun, M. Salmeron, G.A. Somorjai, Science 322, 932 (2008)

    Article  ADS  Google Scholar 

  7. F. Tao, M.E. Grass, Y. Zhang, D.R. Butcher, F. Aksoy, S. Aloni, V. Altoe, S. Alayoglu, J.R. Renzas, C. Tsung, Z. Zhu, Z. Liu, M. Salmeron, G.A. Somorjai, J. Am. Chem. Soc. 132, 8697 (2010)

    Article  Google Scholar 

  8. S.A. Tenney, J.S. Ratliff, C.C. Roberts, W. He, S.C. Ammal, A. Heyden, D.A. Chen, J. Phys. Chem. C 114, 21652 (2010)

    Article  Google Scholar 

  9. P.S. West, R.L. Johnston, G. Barcaro, A. Fortunelli, J. Phys. Chem. C 114, 19678 (2010)

    Article  Google Scholar 

  10. G. Barcaro, A. Fortunelli, M. Polak, L. Rubinovich, Nano Lett. 11, 1766 (2011)

    Article  ADS  Google Scholar 

  11. I.V. Yudanov, R. Sahnoun, K.M. Neyman, N. Rosch, J. Chem. Phys. 117, 9887 (2002)

    Article  ADS  Google Scholar 

  12. M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, Comput. Phys. Commun. 181, 1477 (2010)

    Article  MATH  ADS  Google Scholar 

  13. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  14. D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 77, 123 (1990)

    Article  Google Scholar 

  15. H.L. Skriver, N.M. Rosengaard, Phys. Rev. B 46, 7157 (1992)

    Article  ADS  Google Scholar 

  16. G. Mazzone, I. Rivalta, N. Russo, E. Sicilia, J. Phys. Chem. C 112, 6073 (2008)

    Article  Google Scholar 

  17. F.R. Negreiros, F. Taherkhani, G. Parsafar, A. Caro, A. Fortunelli, J. Chem. Phys. 137, 194302 (2012)

    Article  ADS  Google Scholar 

  18. D. Cheng, I.S. Atanasov, M. Hou, Eur. Phys. J. D 64, 37 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Fortunelli.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, P.S., Johnston, R.L., Barcaro, G. et al. Effect of CO and H adsorption on the compositional structure of binary nanoalloys via DFT modeling. Eur. Phys. J. D 67, 165 (2013). https://doi.org/10.1140/epjd/e2013-40257-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40257-4

Keywords

Navigation