Skip to main content
Log in

Critical conditions protecting entanglement

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The long time dynamics of two qubits, coupled to a common reservoir, and the entanglement can be controlled uniquely by manipulating the spectral density near a band gap and via the initial configuration. The spectral density may be arbitrarily shaped at high frequencies. For transition frequencies larger than the band gap, critical configurations give arbitrarily slow relaxations to the asymptotic regimes. In the non-critical configurations and in the critical configurations of the sub-ohmic condition, the concurrence tends to the same stable value, reaching unity in the singlet state, showing persistence of entanglement. In the critical configurations of the super-ohmic regime, the concurrence oscillates and special conditions make the maxima reach unity and minima vanish at estimated times, showing recursion of events of sudden death and revival of entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. M.B. Plenio, S. Virmani, Quant. Inf. Comput. 1, 1 (2007)

    MathSciNet  Google Scholar 

  4. D. Braun, Phys. Rev. Lett. 89, 277901 (2002)

    Article  ADS  Google Scholar 

  5. S. Oh, J. Kim, Phys. Rev. A 73, 062306 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. Y.-C. Hou, G.-F. Zhang, Y. Chen, H. Fan, Ann. Phys. 327, 292 (2012) and references therein

    Article  ADS  MATH  Google Scholar 

  7. M.A. Nielsen, I.L. Chuang,Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  8. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  9. T. Yu, J.H. Eberly, Phys. Rev. Lett. 97, 140403 (2006)

    Article  ADS  Google Scholar 

  10. J.H. Eberly, T. Yu, Science 316, 555 (2007)

    Article  Google Scholar 

  11. M.P. Ameida, F. de Melo, M. Hor-Meyll, A. Salles, S.P. Walborn, P.H. Souto Ribeiro, L. Davidovich, Science 316, 579 (2007)

    Article  ADS  Google Scholar 

  12. J. Laurant, K.S. Choi, H. Deng, C.W. Chou, H.J. Kimble, Phys. Rev. Lett. 99, 180504 (2007)

    Article  ADS  Google Scholar 

  13. M.G. Paris, J. Opt. B 4, 442 (2002)

    Article  ADS  Google Scholar 

  14. A. Serafini, F. Illuminati, M.G.A. Paris, S. De Siena, Phys. Rev. A 69, 022318 (2004)

    Article  ADS  Google Scholar 

  15. S. Maniscalco, S. Olivares, M.G.A. Paris, Phys. Rev. A 75, 062119 (2007)

    Article  ADS  Google Scholar 

  16. K.-L. Liu, H.-S. Goan, Phys. Rev. A 76, 022312 (2007) and references therein

    Article  ADS  Google Scholar 

  17. J.P. Paz, A.J. Roncaglia, Phys. Rev. Lett. 100, 220401 (2008)

    Article  ADS  Google Scholar 

  18. G.M. Palma, K.-A. Suominen, A.K. Ekart, Proc. R. Soc. Lond. A 452, 567 (1996)

    Article  ADS  MATH  Google Scholar 

  19. P. Zanardi, M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  20. D. Braun, Phys. Rev. Lett. 89, 277901 (2003)

    Article  Google Scholar 

  21. F. Benatti, R. Floreanini, M. Piani, Phys. Rev. Lett. 91, 070402 (2003)

    Article  ADS  Google Scholar 

  22. F. Benatti, R. Floreanini, J. Phys. A 39, 2689 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. S. Natali, Z. Ficek, Phys. Rev. A 75, 042307 (2007)

    Article  ADS  Google Scholar 

  24. S. Oh, J. Kim, Phys. Rev. A 73, 062306 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Dajka, J. Luczka, Phys. Rev. A 77, 062303 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  26. F. Altintas, R. Eryigit, J. Phys. B 44, 125501 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  27. J. Wang, L. Jiang, H. Zhang, T.-H. Huang, H.-Z. Zhang, Opt. Commun. 284, 5323 (2011)

    Article  ADS  Google Scholar 

  28. F.M. Spedaleri, H. Lee, M. Florescu, K. Kapale, U. Yurtsever, J. Dowling, Opt. Commun. 254, 374 (2005)

    Article  ADS  Google Scholar 

  29. S. Maniscalco, F. Francica, R.L. Zaffino, N. Lo Gullo, F. Plastina, Phys. Rev. Lett. 100, 090503 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  30. F. Francica, S. Maniscalco, J. Piilo, F. Plastina, K.A. Suominen, Phys. Rev. A 79, 032310 (2009)

    Article  ADS  Google Scholar 

  31. B. Bellomo, R. Lo Franco, G. Compagno, Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  32. B. Bellomo, R. Lo Franco, S. Maniscalco, G. Compagno, Phys. Rev. A 78, 060302(R) (2008)

    ADS  Google Scholar 

  33. B.M. Garraway, Phys. Rev. A 55, 2290 (1997)

    Article  ADS  Google Scholar 

  34. B.M. Garraway, Phys. Rev. A 55, 4636 (1997)

    Article  ADS  Google Scholar 

  35. I.E. Linington, B.M. Garraway, J. Phys. B 39, 3383 (2006)

    Article  ADS  Google Scholar 

  36. I.E. Linington, B.M. Garraway, Phys. Rev. A 77, 033831 (2008)

    Article  ADS  Google Scholar 

  37. Q.A. Turchetta et al., Phys. Rev. A 62, 053807 (2000)

    Article  ADS  Google Scholar 

  38. C.J. Myatt et al., Nature 403, 269 (2000)

    Article  ADS  Google Scholar 

  39. S. Haroche, J.-M. Raimond, Exploring the Quantum (Oxford University Press, Oxford, 2006)

  40. M.A. Sillanpää, Nature 449, 438 (2007)

    Article  ADS  Google Scholar 

  41. J. Majer et al., Nature 449, 443 (2007)

    Article  ADS  Google Scholar 

  42. M.J. Biercuk et al., Nature 458, 996 (2009)

    Article  ADS  Google Scholar 

  43. F. Giraldi, F. Petruccione, Phys. Rev. A 85, 062107 (2012)

    Article  ADS  Google Scholar 

  44. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  45. J.M. Bendickson, J.P. Dowling, M. Scalora, Phys. Rev. E 53, 4107 (1996)

    Article  ADS  Google Scholar 

  46. C.W. Wong, X. Yang, P.T. Rackic, S.G. Johnson, M. Qi, Y. Jeon, G. Barbastathis, S. Kim, Appl. Phys. Lett. 84, 1242 (2004)

    Article  ADS  Google Scholar 

  47. S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, E.P. Ippen, Nature 390, 143 (1997)

    Article  ADS  Google Scholar 

  48. R. Wong, Yu-Qiu Zhao, Proc. R. Soc. Lond. A 458, 625 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. R. Wong, Asymptotic Approximations of Integrals (Academic Press, Boston, 1989)

  50. H.S. Wall, Analytic Theory of Continued Fractions (D. Van Nostrand Company Inc., 1948)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Giraldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giraldi, F., Petruccione, F. Critical conditions protecting entanglement. Eur. Phys. J. D 67, 178 (2013). https://doi.org/10.1140/epjd/e2013-40245-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40245-8

Keywords

Navigation