Skip to main content
Log in

Photonic band gap of three dimensional magnetized photonic crystal with Voigt configuration

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, the properties of two types of three-dimensional magnetized plasma photonic crystals (MPPCs) composed of homogeneous magnetized plasma and dielectric with simple-cubic lattices are theoretically studied by a modified plane wave expansion (PWE) method, as the magneto-optical Voigt effects of magnetized plasma are considered. The equations for type-1 structures with simple-cubic lattices (dielectric spheres immersed in magnetized plasma background), are theoretically deduced. The influences of dielectric constant of dielectric, plasma collision frequency, filling factor, the external magnetic field and plasma frequency on the properties of photonic band gaps (PBGs) for both types of MPPCs are investigated in detail, respectively, and some corresponding physical explanations are also given. The characteristics of flatbands regions are also discussed. From the numerical results, it has been shown that the PBGs of both types of three-dimensional MPPCs can be manipulated by plasma frequency, filling factor, the external magnetic field and the relative dielectric constant of dielectric, respectively. However, the plasma collision frequency has no effects on the PBGs for two types of three-dimensional MPPCs. The locations of flatbands regions can not be tuned by any parameters except for plasma frequency and the external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  3. N. Nozhat, N. Granpayeh, Prog. Electromagn. Res. 99, 225 (2009)

    Article  Google Scholar 

  4. A. Banerjee, Prog. Electromagn. Res. 89, 11 (2009)

    Article  Google Scholar 

  5. H. Li, X. Yang, Prog. Electromagn. Res. 108, 385 (2010)

    Article  Google Scholar 

  6. W.H. Liu, C.J. Wu, T.J. Yang, S.J. Chang, Opt. Express 18, 27155 (2010)

    Article  ADS  Google Scholar 

  7. W. Yang, X.C. Chen, X.Y. Shi, W. Liu, Superlatt. Microstruct. 49, 74 (2011)

    Article  ADS  Google Scholar 

  8. H.Z. Wang, W.M. Zhou, J.P. Zheng, Optik 121, 1988 (2010)

    Article  ADS  Google Scholar 

  9. H.F. Zhang, S.B. Liu, X.K. Kong, B.R. Bian, Y. Dai, Phys. Plasmas 19, 112102 (2012)

    Article  ADS  Google Scholar 

  10. Y. Akahane, T. Asano, B.S. Song, S. Noda, Nature 425, 944 (2003)

    Article  ADS  Google Scholar 

  11. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, I. Kim, Science 284, 1819 (1999)

    Article  Google Scholar 

  12. M.F. Yanik, S. Fan, M. Solija, Appl. Phys. Lett. 83, 2739 (2003)

    Article  ADS  Google Scholar 

  13. H.F. Zhang, S.B. Liu, X.K. Kong, Acta Phys. Sin. 60, 025215 (2011)

    Google Scholar 

  14. H. Hojo, A. Mase, J. Plasma Fusion Res. 80, 89 (2004)

    Article  ADS  Google Scholar 

  15. H.F. Zhang, S.B. Liu, X.K. Kong, L. Zhou, C.Z. Li, B.R. Bian, Optik 124, 751 (2013)

    Article  ADS  Google Scholar 

  16. H.F. Zhang, S.B. Liu, X.K. Kong, L. Zhou, B.R. Bian, H.C. Zhao, Opt. Commun. 285, 5235 (2012)

    Article  ADS  Google Scholar 

  17. H.F. Zhang, S.B. Liu, X.K. Kong, Acta Phys. Sin. 60, 055209 (2011)

    Google Scholar 

  18. C.Z. Li, S.B. Liu, X.K. Kong, H.F. Zhang, B.R. Bian, X.Y. Zhang, IEEE Trans. Plasma Sci. 39, 1969 (2011)

    Article  ADS  Google Scholar 

  19. H.F. Zhang, S.B. Liu, X.K. Kong, L. Zou, C.Z. Li, W.S. Qing, Phys. Plasmas 19, 022103 (2012)

    Article  ADS  Google Scholar 

  20. L. Shiverhwari, Optik 122, 1523 (2011)

    Article  ADS  Google Scholar 

  21. B. Guo, Phys. Plasmas 16, 043508 (2009)

    Article  ADS  Google Scholar 

  22. L. Qi, Z. Yang, Prog. Electromagn. Res. 91, 319 (2009)

    Article  Google Scholar 

  23. O. Sakai, K. Tachibana, IEEE Trans. Plasma Sci. 35, 1267 (2007)

    Article  ADS  Google Scholar 

  24. H.F. Zhang, M. Li, S.B. Liu, Optelectr. Lett. 5, 112 (2009)

    Article  ADS  Google Scholar 

  25. S.B. Liu, C.Q. Gu, J.J. Zhou, N.C. Yuan, Acta Phys. Sin. 55, 1283 (2006)

    Google Scholar 

  26. H.F. Zhang, M. Li, S.B. Liu, Acta Phys. Sin. 58, 1071 (2009)

    Google Scholar 

  27. L. Qi, Z. Yang, T. Fu, Phys. Plasmas 19, 012509 (2012)

    Article  ADS  Google Scholar 

  28. X.K. Kong, S.B. Liu, H.F. Zhang, C.Z. Li, Phys. Plasmas 17, 103606 (2010)

    Article  Google Scholar 

  29. L. Qi, Z.Q. Yang, F. Lan, X. Gao, Z.J. Shi, Phys. Plasmas 17, 042501 (2010)

    Article  ADS  Google Scholar 

  30. L. Qi, J. Appl. Phys. 111, 073301 (2012)

    Article  ADS  Google Scholar 

  31. H.F. Zhang, S.B. Liu, X.K. Kong, B.R. Bian, Y.N. Cuo, Solid State Commun. 152, 1221 (2012)

    Article  ADS  Google Scholar 

  32. L. Qi, X. Zhang, Solid State Commun. 151, 1838 (2011)

    Article  ADS  Google Scholar 

  33. H.F. Zhang, S.B. Liu, X.K. Kong, C. Chen, B.R. Bian, Opt. Commun. 288, 82 (2013)

    Article  ADS  Google Scholar 

  34. V.L. Ginzburg, The Propagation of Electromagnetic wave in Plasma (Pergamon Press, Oxford, 1970)

  35. J. Yuan, Y.Y. Lu, Opt. Commun. 273, 114 (2007)

    Article  ADS  Google Scholar 

  36. V. Kuzmiak, A.A. Maradudin, Phys. Rev. B 55, 7427 (1997)

    Article  ADS  Google Scholar 

  37. H.F. Zhang, S.B. Liu, X.K. Kong, L. Zhou, C.Z. Li, B.R. Bo, J. Appl. Phys. 110, 026104 (2011)

    Article  ADS  Google Scholar 

  38. Z.Y. Li, W. Jiang, B.Y. Gu, Phys. Rev. B 58, 3721 (1998)

    Article  ADS  Google Scholar 

  39. H.F. Zhang, S.B. Liu, X.K. Kong, J. Lightwave Technol. 17, 1694 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, HF., Liu, SB., Kong, XK. et al. Photonic band gap of three dimensional magnetized photonic crystal with Voigt configuration. Eur. Phys. J. D 67, 169 (2013). https://doi.org/10.1140/epjd/e2013-40193-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40193-3

Keywords

Navigation