Skip to main content
Log in

Enlargement of the omnidirectional reflectance gap in one-dimensional photonic crystal heterostructure containing double negative index material

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, we investigate by theoretical analysis a way to enlarge the frequency range of band gap in one-dimensional heterostructure photonic crystal (PC) made of two PCs alternate stacked by conventional and double negative index material. The numerical results by scattering matrix method (SMM) show that, for the proposed PC with appropriate parameters, there is an omnidirectional photonic band gap (OBG), which is insensitive to incident angle and polarization. The thickness ratio of layers in the second PC is the inverse and identical of that in the first PC, respectively. Two PCs form the PC heterostructures. Moreover, we demonstrate the existence of OBG and notable enlargement of the frequency range of the OBG in proposed PC heterostructure. The reason is that the pass band of one of the two PCs falls into the forbidden band of another PC. Decreasing the thickness of layers but not changing the thickness ratio of layers in the second PC, the frequency range of OBG keeps invariant. However, with the increasing of thickness of layers, the frequency range of OBG gets narrow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  3. L.G. Wang, H. Chen, S.Y. Zhu, Phys. Rev. B 70, 245102 (2004)

    Article  ADS  Google Scholar 

  4. D. Lust, I. Abdulhalim, F. Placido, Opt. Commun. 198, 273 (2001)

    Article  ADS  Google Scholar 

  5. I. Abdulhalim, Opt. Commun. 174, 43 (2000)

    Article  ADS  Google Scholar 

  6. A.G. Barriuso et al., Opt. Express 13, 3913 (2005)

    Article  ADS  Google Scholar 

  7. W.J. Hsueh, S.J. Wun, T.H. Yu, J. Opt. Soc. Am. B 27, 1092 (2010)

    Article  ADS  Google Scholar 

  8. M. Ibanescu, Y. Fink, S. Fan, E.L. Thomas, J.D. Joannopulos, Science 289, 415 (2000)

    Article  ADS  Google Scholar 

  9. S.D. Hart, G.R. Maskaly, B. Temelkuran, P.H. Prideaux, J.D. Joannopulos, Y. Fink, Science 296, 510 (2002)

    Article  ADS  Google Scholar 

  10. Y.H. Lu, M.D. Huang, S.Y. Park, P.J. Kim, T.-U. Nahm, Y.P. Lee, J.Y. Rhee, J. Appl. Phys. 101, 036110 (2007)

    Article  ADS  Google Scholar 

  11. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  12. S. Zhang, Phys. Rev. Lett. 102, 023901 (2009)

    Article  ADS  Google Scholar 

  13. Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, E.L. Thomas, Science 282, 1679 (1998)

    Article  ADS  Google Scholar 

  14. J.N. Winn, Y. Fink, S. Fan, J.D. Joannopoulos, Opt. Lett. 23, 1573 (1998)

    Article  ADS  Google Scholar 

  15. P. Han, H.Z. Wang, J. Opt. Soc. Am. B 20, 1996 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. S.K. Awasthi, U. Malaviya, S.P. Ojha, J. Opt. Soc. Am. B 23, 2566 (2006)

    Article  ADS  Google Scholar 

  17. C.J. Wu, Y.N. Rau, W.H. Han, Prog. Electromagnet. Res. 100, 27 (2010)

    Article  Google Scholar 

  18. C. Zhang, F. Qiao, J. Wan, J. Zi, J. Appl. Phys. 87, 3174 (2000)

    Article  ADS  Google Scholar 

  19. X. Wang et al., Appl. Phys. Lett. 80, 4291 (2002)

    Article  ADS  Google Scholar 

  20. R. Srivastava, S. Pati, S. Ojha, Prog. Electromagnet. Res. B 1, 197 (2008)

    Article  Google Scholar 

  21. Y.J. Xiang, X.Y. Dai, S.C. Wen, D.Y. Fan, Phys. Rev. E 76, 056604 (2007)

    Article  ADS  Google Scholar 

  22. H.F. Zhang et al., Phys. Plasmas 19, 022103 (2012)

    Article  ADS  Google Scholar 

  23. B. Suthar, A. Bhargava, Opt. Commun. 285, 1481 (2012)

    Article  ADS  Google Scholar 

  24. H. Daninthe, S. Foteinopoulou, C.M. Soukoulis, Photon. Nanostruct. Fund. Appl. 4, 123 (2006)

    Article  ADS  Google Scholar 

  25. X.H. Deng et al., J. Phys.: Condens. Matter 22, 055403 (2010)

    ADS  Google Scholar 

  26. S.K. Srivastava, S.P. Ojha, Prog. Electromagnet. Res. 68, 91 (2007)

    Article  Google Scholar 

  27. H.F. Zhang, S. Liu, X.-K. Kong, B.-R. Bian, X. Zhao, Prog. Electromagnet. Res. B 40, 415 (2012)

    Article  Google Scholar 

  28. G.Q. Liang, P. Han, H.Z. Wang, Opt. Lett. 29, 192 (2003)

    Article  ADS  Google Scholar 

  29. L. Wang et al., J. Appl. Phys. 95, 424 (2004)

    Article  ADS  Google Scholar 

  30. Y.H. Chen, J.W. Dong, H.Z. Wang, J. Opt. Soc. Am. B 23, 2237 (2006)

    Article  ADS  Google Scholar 

  31. G. Alagappan, P. Wu, Appl. Phys. 96, 709 (2009)

    Article  Google Scholar 

  32. B. Gralak, S. Enoch, G. Tayeb, J. Opt. Soc. Am. A 19, 1547 (2002)

    Article  ADS  Google Scholar 

  33. D.R. Fredkin, A. Ron, Appl. Phys. Lett. 81, 1753 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, X., Li, H. Enlargement of the omnidirectional reflectance gap in one-dimensional photonic crystal heterostructure containing double negative index material. Eur. Phys. J. D 67, 224 (2013). https://doi.org/10.1140/epjd/e2013-40157-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40157-7

Keywords

Navigation