Skip to main content
Log in

Macroscopic quantum many-body tunneling of attractive Bose-Einstein condensate in anharmonic trap

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study the stability of attractive atomic Bose-Einstein condensate and the macroscopic quantum many-body tunneling (MQT) in the anharmonic trap. We utilize correlated two-body basis function which keeps all possible two-body correlations. The anharmonic parameter (λ) is slowly tuned from harmonic to anharmonic. For each choice of λ the many-body equation is solved adiabatically. The use of the van der Waals interaction gives realistic picture which substantially differs from the mean-field results. For weak anharmonicity, we observe that the attractive condensate gains stability with larger number of bosons compared to that in the pure harmonic trap. The transition from resonances to bound states with weak anharmonicity also differs significantly from the earlier study of [N. Moiseyev, L.D. Carr, B.A. Malomed, Y.B. Band, J. Phys. B 37, L193 (2004)]. We also study the tunneling of the metastable condensate very close to the critical number N cr of collapse and observe that near collapse the MQT is the dominant decay mechanism compared to the two-body and three-body loss rate. We also observe the power law behavior in MQT near the critical point. The results for pure harmonic trap are in agreement with mean-field results. However, we fail to retrieve the power law behavior in anharmonic trap although MQT is still the dominant decay mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2001)

  2. E.A. Cornell, C.E. Weiman, Rev. Mod. Phys. 74, 875 (2002)

    Article  ADS  Google Scholar 

  3. N. Moiseyev, L.D. Carr, B.A. Malomed, Y.B. Band, J. Phys. B 37, L193 (2004)

    Article  Google Scholar 

  4. S.K. Adhikari, J. Phys. B 38, 579 (2005)

    Article  ADS  Google Scholar 

  5. N. Moiseyev, L.S. Cederbaum, Phys. Rev. A 72, 033605 (2005)

    Article  ADS  Google Scholar 

  6. K. Rapedius, H.J. Korsch, Phys. Rev. A 77, 063610 (2008)

    Article  ADS  Google Scholar 

  7. K. Rapedius, D. Witthaut, H.J. Korsch, Phys. Rev. A 73, 033608 (2006)

    Article  ADS  Google Scholar 

  8. L.D. Carr, M.J. Holland, B.A. Malomed, J. Phys. B 38, 3217 (2005)

    Article  ADS  Google Scholar 

  9. Y. Shin et al., Phys. Rev. Lett. 92, 050405 (2004)

    Article  ADS  Google Scholar 

  10. Y. Shin et al., Phys. Rev. Lett. 92, 150401 (2004)

    Article  ADS  Google Scholar 

  11. P. Schlagheck, T. Paul, Phys. Rev. A 73, 023619 (2006)

    Article  ADS  Google Scholar 

  12. A.U.J. Lode, A.I. Streltsov, O.E. Alon, H. Meyer, L.S. Cederbaum, J. Phys. B 42, 044018 (2009)

    Article  ADS  Google Scholar 

  13. A.U.J. Lode, A.I. Streltsov, K. Sakmann, O.E. Alon, L.S. Cederbaum, Proc. Natl. Acad. Sci. USA 109, 13521 (2012)

    Article  ADS  Google Scholar 

  14. G.F. Gribakin, V.V. Flambaum, Phys. Rev. A 48, 546 (1993)

    Article  ADS  Google Scholar 

  15. R. Côté, A. Dalgarno, M.J. Jamieson, Phys. Rev. A 50, 399 (1994)

    Article  ADS  Google Scholar 

  16. V. Bretin, S. Stock, Y. Seurin, J. Dalibard, Phys. Rev. Lett. 92, 050403 (2004)

    Article  ADS  Google Scholar 

  17. M. Ueda, A.J. Leggett, Phys. Rev. Lett. 80, 1576 (1998)

    Article  ADS  Google Scholar 

  18. F. Dalfovo, S. Giorgini, L. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  19. M. Fabre de la Ripelle, Ann. Phys. 147, 281 (1983)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. T.K. Das, A. Kundu, S. Canuto, B. Chakrabarti, Phys. Lett. A 373, 258 (2009)

    Article  ADS  Google Scholar 

  21. A. Biswas, B. Chakrabarti, T.K. Das, L. Salasnich, Phys. Rev. A 84, 043631 (2011)

    Article  ADS  Google Scholar 

  22. A. Biswas, T.K. Das, L. Salasnich, B. Chakrabarti, Phys. Rev. A 82, 043607 (2010)

    Article  ADS  Google Scholar 

  23. S.K. Haldar, B. Chakrabarti, T.K. Das, Phys. Rev. A 82, 043616 (2010)

    Article  ADS  Google Scholar 

  24. T.K. Das, B. Chakrabarti, Phys. Rev. A 70, 063601 (2004)

    Article  ADS  Google Scholar 

  25. T.K. Das, S. Canuto, A. Kundu, B. Chakrabarti, Phys. Rev. A 75, 042705 (2007)

    Article  ADS  Google Scholar 

  26. J.L. Ballot, M. Fabre de la Ripelle, Ann. Phys. 127, 62 (1980)

    Article  ADS  Google Scholar 

  27. M. Fabre de la Ripelle, Few-Body Syst. 1, 181 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Abramowitz, I.A. Stegun, Handbook of mathematical functions (National Institute of Standards and Technology, US Government Printing Office, Washington, DC, 1964)

  29. J.L. Roberts, N.R. Claussen, S.L. Cornish, E.A. Donley, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 86, 4211 (2001)

    Article  ADS  Google Scholar 

  30. J.L. Roberts, N.R. Claussen, J.P. Burke, C.H. Greene, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 81, 5109 (1998)

    Article  ADS  Google Scholar 

  31. S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 85, 1795 (2000)

    Article  ADS  Google Scholar 

  32. L. Salasnich, Phys. Rev. A 61, 015601 (1999)

    Article  ADS  Google Scholar 

  33. A. Parola, L. Salasnich, L. Reatto, Phys. Rev. A 57, R3180 (1998)

    Article  ADS  Google Scholar 

  34. L. Reatto, A. Parola, L. Salasnich, J. Low Temp. Phys. 113, 195 (1998)

    Article  ADS  Google Scholar 

  35. L. Salasnich, Mod. Phys. Lett. B 12, 649 (1998)

    Article  ADS  Google Scholar 

  36. T.K. Das, H.T. Coelho, M. Fabre de la Ripelle, Phys. Rev. C 26, 2281 (1982)

    Article  ADS  Google Scholar 

  37. B. Chakrabarti, T.K. Das, P.K. Debnath, Phys. Rev. A 79, 053629 (2009)

    Article  ADS  Google Scholar 

  38. P.K. Debnath, B. Chakrabarti, Phys. Rev. A 82, 043614 (2010)

    Article  ADS  Google Scholar 

  39. B. Chakrabarti, Pramana J. Phys. 73, 405 (2009)

    Article  ADS  Google Scholar 

  40. S.K. Haldar, B. Chakrabarti, T.K. Das, Few-Body Syst. 58, 283 (2012)

    Article  ADS  Google Scholar 

  41. S. Stock, V. Bretin, F. Chevy, J. Dalibard, Europhys. Lett. 65, 594 (2004)

    Article  ADS  Google Scholar 

  42. A. Kundu, B. Chakrabarti, T.K. Das, S. Canuto, J. Phys. B: At. Mol. Opt. Phys. 40, 2225 (2007)

    Article  ADS  Google Scholar 

  43. L.S. Cederbaum, A.I. Streltsov, O.E. Alon, Phys. Rev. Lett. 100, 040402 (2008)

    Article  ADS  Google Scholar 

  44. J.L. Bohn, B.D. Esry, C.H. Greene, Phys. Rev. A 58, 584 (1998)

    Article  ADS  Google Scholar 

  45. J.L. Roberts, N.R. Claussen, S.L. Cornish, C.E. Wieman, Phys. Rev. Lett. 85, 728 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Kumar Haldar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haldar, S.K., Debnath, P.K. & Chakrabarti, B. Macroscopic quantum many-body tunneling of attractive Bose-Einstein condensate in anharmonic trap. Eur. Phys. J. D 67, 188 (2013). https://doi.org/10.1140/epjd/e2013-40008-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40008-7

Keywords

Navigation