Skip to main content
Log in

A study of teleportation and super dense coding capacity in remote entanglement distribution

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work we consider a quantum network consisting of nodes and entangled states connecting them. In every node there is a single player. The players at the intermediate nodes carry out measurements to produce an entangled state between the initial and final node. Here we address the problem that how much classical as well as quantum information can be sent from initial node to final node. In this context, we present strong theorems which state that how the teleportation capability of this remotely prepared state is linked up with the fidelities of teleportation of the resource states. Similarly, we analyze the super dense coding capacity of this remotely prepared state in terms of the capacities of the resource entangled states. However, we first obtain the relations involving the amount of entanglement of the resource states with the final state in terms concurrence. These relations are quite similar to the bounds obtained in references [G. Gour, Phys. Rev. A 71, 012318 (2005); G. Gour, B.C. Sanders, Phys. Rev. Lett. 93, 260501 (2005)]. More specifically, in an arbitrary quantum network when two nodes are not connected, our result shows how much information, both quantum and classical can be transmitted between these nodes. We show that the amount of transferable information depends on the capacities of the inter connecting entangled resources. These results have a tremendous future application in the context of determining the optimal path in a quantum network to send the maximal possible information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. C.H. Bennett, G. Brassard, C. Creapeau, R. Jozsa, A. Pares, W.K. Wooters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. C.H. Bennett, S. Wiesner, Phys. Rev. Lett. 69, 433 (1992)

    MathSciNet  Google Scholar 

  4. A.K. Pati, Phys. Rev. A 63, 014320 (2001)

    ADS  Google Scholar 

  5. C.H. Bennett, D.P. DiVincenzo, P.W. Shor, J.A. Smolin, B.M. Terhal, W.K. Wooters, Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  6. M. Hillery, V. Buzek, A. Berthiaume, Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  7. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  8. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  9. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  10. W.K. Wootters, Quantum Inf. Comput. 1, 27 (2001)

    MathSciNet  MATH  Google Scholar 

  11. X.-H. Gao, A. Sergio, K. Chen, S.-M. Fei, X.-Q. Li-Jost, Front. Coumput. Sci. China 2, 114 (2008)

    Article  Google Scholar 

  12. K. Chen, S. Albeverio, S.-M. Fei, Phys. Rev. Lett. 95, 210501 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  13. H. Fan, K. Matsumoto, H. Imai, J. Phys. A 36, 4151 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. P. Rungta, V. Buzek, C.M. Caves, M. Hillery, G.J. Milburn, Phys. Rev. A 64, 042315 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  15. C.-J. Zhang, Y.-X. Gong, Y.-S. Zhang, G.-C. Guo, Phys. Rev. A 78, 042308 (2008)

    Article  ADS  Google Scholar 

  16. I. Chattopadhyay, D. Sarkar, Quantum Inf. Process. 7, 243 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Chen, S. Albeverio, S.-M. Fei, Rep. Math. Phys. 58, 325 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. V. Coffman, J. Kundu, W.K. Wootters, Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  19. G. Gour, Phys. Rev. A 71, 012318 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. G. Gour, B.C. Sanders, Phys. Rev. Lett. 93, 260501 (2005)

    Article  Google Scholar 

  21. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  23. E. Schmidt, Math. Ann. 63, 433 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  24. R.F. Werner, Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  25. R. Horodecki, M. Horodecki, P. Horodecki, Phys. Lett. A 222, 21 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. I. Chakrabarty, Eur. Phys. J. D 57, 265 (2010)

    Article  ADS  Google Scholar 

  27. S. Adhikari, N. Ganguly, I. Chakrabarty, B.S. Choudhury, J. Phys. A 41, 415302 (2008)

    Article  MathSciNet  Google Scholar 

  28. P. Agrawal, A.K. Pati, Phys. Lett. A 305, 12 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. T. Hiroshima, J. Phys. A: Math. Gen. 34, 6907 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. D. Bruss, G.M. DAriano, M. Lewenstein, C. Macchiavello, A. Sen(De), U. Sen, Phys. Rev. Lett. 93, 210501 (2004)

    Article  ADS  Google Scholar 

  31. D. Bruss, G.M. DAriano, M. Lewenstein, C. Macchiavello, A. Sen(De), U. Sen, Int. J. Quant. Inf. 4, 415 (2006)

    Article  MATH  Google Scholar 

  32. Z. Shadman, H. Kampermann, C. Macchiavello, D. Bruss, New J. Phys. 12, 073042 (2010)

    Article  ADS  Google Scholar 

  33. I. Chakrabarty, P. Agrawal, A.K. Pati, Quantum Inf. Comput. 12, 0271 (2012)

    MathSciNet  Google Scholar 

  34. Sk Sazim, S. Adhikari, S. Banerjee, T. Pramanik, arXiv:quant-ph/1208.4200

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sk Sazim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sazim, S., Chakrabarty, I. A study of teleportation and super dense coding capacity in remote entanglement distribution. Eur. Phys. J. D 67, 174 (2013). https://doi.org/10.1140/epjd/e2013-30746-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-30746-9

Keywords

Navigation