Skip to main content
Log in

Decoherence dynamics of discord for multipartite quantum systems

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Quantum discord is an optimal resource for the measure of classical and non-classical correlations as compared to other related measures. Geometric measure of quantum discord is another measure of quantum correlations. Recently, the geometric quantum discord (GQD) for multipartite states has been introduced by Xu [J. Phys. A: Math. Theor. 45, 405304 (2012)]. Motivated from the recent study [M.-L. Hu, H. Fan, Ann. Phys. 327, 851 (2012)] for the bipartite systems, I have investigated global quantum discord (QD) and geometric quantum discord (GQD) under the influence of external environments for different multipartite states. Werner-GHZ type three-qubit and six-qubit states are considered in inertial and non-inertial settings. The dynamics of QD and GQD is investigated under amplitude damping, phase damping, depolarizing and flipping channels. The vanishing behaviour of quantum discord is seen for higher level of decoherence, i.e. the behaviour is prominent for p > 0.75 in case of three-qubit GHZ states and for p > 0.5 for six qubit GHZ states. This implies that multipartite states are more fragile to decoherence for higher values of N. Surprisingly, a rapid fall and rise of quantum discord occurs in case of phase flip channel at p = 0.5. However, the behaviour is avoidable in case of bit flip channel for the six-qubit GHZ states. On the other hand, depolarizing channel heavily influences the QD and GQD as compared to the amplitude damping channel. It means that the depolarizing channel has the most destructive influence on the discords for multipartite states. It is also seen that the QD and GQD manifest the phenomena of sudden transition and freeze in the presence of flipping noise. From the perspective of accelerated observers, it is seen that effect of environment on QD and GQD is much stronger than that of the acceleration of non-inertial frames. The degradation of QD and GQD happens due to Unruh effect. Furthermore, QD exhibits more robustness than GQD when the multipartite systems are exposed to environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  2. A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  3. S. Luo, Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  4. M.S. Sarandy, Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  5. A. Shabani, D.A. Lidar, Phys. Rev. Lett. 102, 100402 (2009)

    Article  ADS  Google Scholar 

  6. M. Ali, A.R.P. Rau, G. Alber, Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  7. P. Giorda, M.G.A. Paris, Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  8. J.-S. Jin et al., J. Opt. Soc. Am. B 27, 1799 (2010)

    Article  ADS  Google Scholar 

  9. A. Brodutch, D.R. Terno, Phys. Rev. A 83, 010301(R) (2011)

    Article  ADS  Google Scholar 

  10. Q. Chen, C. Zhang, S. Yu, X.X. Yi, C.H. Oh, Phys. Rev. A 84, 042313 (2011)

    Article  ADS  Google Scholar 

  11. I. Chakrabarty, P. Agrawal, A.K. Pati, Eur. Phys. J. D 65, 605 (2011)

    Article  ADS  Google Scholar 

  12. A. Streltsov et al., Phys. Rev. Lett. 106, 160401 (2011)

    Article  ADS  Google Scholar 

  13. Jianwei Xu, J. Phys. A: Math. Theor. 44, 445310 (2011)

    Article  ADS  Google Scholar 

  14. M. Piani, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 100, 090502 (2008)

    Article  ADS  Google Scholar 

  15. M. Piani et al., Phys. Rev. Lett. 106, 220403 (2011)

    Article  ADS  Google Scholar 

  16. D. Cavalcanti et al., Phys. Rev. A 83, 032324 (2011)

    Article  ADS  Google Scholar 

  17. M. Gessner, H.P. Breuer, Phys. Rev. A 87, 042107 (2013)

    Article  ADS  Google Scholar 

  18. E.M. Laine et al., Europhys. Lett. 92, 60010 (2010)

    Article  ADS  Google Scholar 

  19. C.C. Rulli, M.S. Sarandy, Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  20. M. Okrasa, Z. Walczak, Europhys. Lett. 96, 60003 (2011)

    Article  ADS  Google Scholar 

  21. K. Modi, V. Vedral, AIP Conf. Proc. 1384, 69 (2011)

    Article  ADS  Google Scholar 

  22. Jianwei Xu, Phys. Lett. A 377, 238 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  23. T. Werlang, S. Souza, F.F. Fanchini, C.J.V. Boas, Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  24. J. Maziero, L.C. Céleri, R.M. Serra, V. Vedral, Phys. Rev. A 80, 044102 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  25. F.F. Fanchini, T. Werlang, C.A. Brasil, L.G.E. Arruda, A.O. Caldeira, Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  26. J. Maziero, T. Werlang, F.F. Fanchini, L.C. Céleri, R.M. Serra, Phys. Rev. A 81, 022116 (2010)

    Article  ADS  Google Scholar 

  27. Cheng-Zhi Wang et al., J. Phys. B: At. Mol. Opt. Phys. 44, 015503 (2011)

    Article  ADS  Google Scholar 

  28. B. Wang, Z.Y. Xu, Z.Q. Chen, M. Feng, Phys. Rev. A 81, 014101 (2010)

    Article  ADS  Google Scholar 

  29. A. Ferdi, Opt. Commun. 283, 5264 (2010)

    Article  Google Scholar 

  30. H. Zhi, J. Zou, B. Shao, S.-Y. Kong, J. Phys. B: At. Mol. Opt. Phys. 43, 115503 (2010)

    Article  ADS  Google Scholar 

  31. Y.Q. Zhang, J.B. Xu, Eur. Phys. J. D 64, 549 (2011)

    Article  ADS  Google Scholar 

  32. A. Isar, Open Syst. Inf. Dyn. 18, 175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Batle et al., J. Phys. A: Math. Theor. 44, 505304 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  34. B.-F. Ding et al., Chin. Phys. Lett. 28, 104216 (2011)

    Article  ADS  Google Scholar 

  35. X. Zhengjun et al., J. Phys. B: At. Mol. Opt. Phys. 44, 215501 (2011)

    Article  ADS  Google Scholar 

  36. Z.Y. Xu et al., J. Phys. A: Math. Theor. 44, 395304 (2011)

    Article  ADS  Google Scholar 

  37. S.M. Xiao et al., Opt. Commun. 284, 555 (2011)

    Article  ADS  Google Scholar 

  38. J.-Q. Li, J.-Q. Liang, Phys. Lett. A 375, 1496 (2011)

    Article  MATH  ADS  Google Scholar 

  39. G. Karpat, Z. Gedik, Phys. Lett. A 375, 4166 (2011)

    Article  MATH  ADS  Google Scholar 

  40. B. Bellomo et al., Int. J. Quantum Inf. 9, 1665 (2011)

    Article  MATH  Google Scholar 

  41. K Berrada et al., J. Phys. B: At. Mol. Opt. Phys. 44, 145503 (2011)

    Article  ADS  Google Scholar 

  42. J.L. Guo, Y.J. Mi, H.S. Song, Eur. Phys. J. D 66, 24 (2012)

    Article  ADS  Google Scholar 

  43. Q.-X. Mu, Y.-Q. Zhang, J. Song, J. Mod. Opt. 59, 387 (2012)

    Article  ADS  Google Scholar 

  44. Q. Yi, J.-B. Xu, Chin. Phys. Lett. 29, 040302 (2012)

    Article  Google Scholar 

  45. Y.-J. Mi, Int. J. Theor. Phys. 51, 544 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. A. Kofman, Quantum Inf. Proc. 11, 269 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. F. Benatti, R. Floreanini, U. Marzolino, Ann. Phys. 327, 1304 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Z. Guo et al., J. Phys. A: Math. Theor. 45, 145301 (2012)

    Article  ADS  Google Scholar 

  49. M. Mahdian, R. Yousefjani, S. Salimi, Eur. Phys. J. D 66, 133 (2012)

    Article  ADS  Google Scholar 

  50. M. Ali, J. Phys. A: Math. Theor. 43, 495303 (2010)

    Article  ADS  Google Scholar 

  51. S. Vinjanampathy, A.R.P. Rau, J. Phys. A: Math. Theor. 45, 095303 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  52. R. Dillenschneider, Phys. Rev. B 78, 224413 (2008)

    Article  ADS  Google Scholar 

  53. T. Zehua, J. Jiliang, Phys. Lett. B 707, 264 (2012)

    Article  Google Scholar 

  54. A. Datta, Phys. Rev. A 80, 052304 (2009)

    Article  ADS  Google Scholar 

  55. Y. Yao et al., Phys. Lett. A 376, 358 (2012)

    Article  MATH  ADS  Google Scholar 

  56. X. Zhengjun, X.-M. Lu, X. Wang, Y. Li, J. Phys. A: Math. Theor. 44, 375301 (2011)

    Article  Google Scholar 

  57. S. Rana, P. Parashar, Phys. Rev. A 85, 024102 (2012)

    Article  ADS  Google Scholar 

  58. B.P. Lanyon et al., Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  59. G. Passante et al., Phys. Rev. A 84, 044302 (2011)

    Article  ADS  Google Scholar 

  60. A. Chiuri et al., Phys. Rev. A 84, 020304(R) (2011)

    Article  ADS  Google Scholar 

  61. L.C. Céleri et al., Int. J. Quantum Inf. 9, 1837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. B. Dakic et al., Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  63. S.-L. Luo, S.-S. Fu, Phys. Rev. A 82, 034302 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  64. Jianwei Xu, Phys. Lett. A 376, 320 (2012)

    Article  MATH  ADS  Google Scholar 

  65. Jianwei Xu, J. Phys. A: Math. Theor. 45, 405304 (2012)

    Article  Google Scholar 

  66. M. Piani, Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  67. X. Hu et al., Phys. Rev. A 87, 032340 (2013)

    Article  ADS  Google Scholar 

  68. T. Tufarelli, D. Girolami, R. Vasile, S. Bose, G. Adesso, Phys. Rev. A 86, 052326 (2012)

    Article  ADS  Google Scholar 

  69. J. Maziero, F.M. Zimmer, Phys. Rev. A 86, 042121 (2012)

    Article  ADS  Google Scholar 

  70. F.M. Paula et al., arXiv:1302.7034

  71. B. Dakic et al., Nat. Phys. 8, 666 (2012)

    Article  Google Scholar 

  72. M.-L. Hu, H. Fan, Ann. Phys. 327, 851 (2012)

    Article  MATH  ADS  Google Scholar 

  73. X.-M. Lu et al., Quantum Inf. Comput. 10, 0994 (2010)

    Google Scholar 

  74. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  75. M.A. Schlosshauer, Decoherence and the Quantum-To- Classical Transition (Springer, 2007)

  76. M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996)

    Article  ADS  Google Scholar 

  77. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

  78. S. Scheel, D.-G. Welsch, Phys. Rev. A 64, 063811 (2001)

    Article  ADS  Google Scholar 

  79. Q. Pan, J. Jing, Phys. Rev. A 77, 024302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  80. M. Ramzan, M.K. Khan, Quantum Inf. Proc. 9, 667 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  81. Y.-S. Kim et al., Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  82. P.M. Alsing, I. Fuentes-Schuller, R.B. Mann, T.E. Tessier, Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  83. D.E. Bruschi et al., Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

  84. J. Wang, J. Deng, J. Jing, Phys. Rev. A 81, 052120 (2010)

    Article  ADS  Google Scholar 

  85. E. Martín-Martínez et al., Phys. Rev. D 82, 064006 (2010)

    Article  ADS  Google Scholar 

  86. M.R. Hwang et al., Phys. Rev. A 83, 012111 (2010)

    Article  ADS  Google Scholar 

  87. J. Wang, J. Jing, Phys. Rev. A 83, 022314 (2011)

    Article  ADS  Google Scholar 

  88. M. Montero et al., Phys. Rev. A 84, 042320 (2011)

    Article  ADS  Google Scholar 

  89. G. Adesso, I. Fuentes-Schuller, M. Ericsson, Phys. Rev. A 76, 062112 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  90. M.-D. Hossein et al., Ann. Phys. 326, 1320 (2011)

    Article  MATH  Google Scholar 

  91. T.C. Ralph, T.G. Downes, Cont. Phys. 53, 1 (2012)

    Article  ADS  Google Scholar 

  92. L.C. Céleri et al., Phys. Rev. A 81, 062130 (2010)

    Article  ADS  Google Scholar 

  93. J. Wang, J. Jing, Phys. Rev. A 82, 032324 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  94. J. Wang, J. Jing, Ann. Phys. 327, 283 (2012)

    Article  MATH  ADS  Google Scholar 

  95. Min-Zhe Piao, Xin Ji, J. Mod. Opt. 59, 21 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  96. Y. Wang, Xin Ji, J. Mod. Opt. 59, 571 (2012)

    Article  ADS  Google Scholar 

  97. M. Ramzan, M.K. Khan, Quantum Inf. Process. 11, 443 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  98. M. Ramzan, Chin. Phys. Lett. 29, 020302 (2012)

    Article  ADS  Google Scholar 

  99. M. Ramzan, Quantum Inf. Process. 12, 83 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  100. M. Ramzan, Quantum Inf. Process. 12, 2721 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  101. M. Aspachs et al., Phys. Rev. Lett. 105, 151301 (2010)

    Article  ADS  Google Scholar 

  102. M.A. Nielson, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ramzan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramzan, M. Decoherence dynamics of discord for multipartite quantum systems. Eur. Phys. J. D 67, 170 (2013). https://doi.org/10.1140/epjd/e2013-30700-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-30700-y

Keywords

Navigation