Bessel beams of two-level atoms driven by a linearly polarized laser field

  • Armen G. Hayrapetyan
  • Oliver Matula
  • Andrey Surzhykov
  • Stephan Fritzsche
Regular Article

Abstract

We study Bessel beams of two-level atoms that are driven by a linearly polarized laser field. Starting from the Schrödinger equation, we determine the states of two-level atoms in a plane-wave field respecting propagation directions both of the atom and the field. For such laser-driven two-level atoms, we construct Bessel beams beyond the typical paraxial approximation. We show that the probability density of these atomic beams obtains a non-trivial, Bessel-squared-type behavior and can be tuned under the special choice of the atom and laser parameters, such as the nuclear charge, atom velocity, laser frequency, and propagation geometry of the atom and laser beams. Moreover, we spatially and temporally characterize the beam of hydrogen and selected (neutral) alkali-metal atoms that carry non-zero orbital angular momentum (OAM). The proposed spatiotemporal Bessel states (i) are able to describe, in principle, twisted states of any two-level system which is driven by the radiation field and (ii) have potential applications in atomic and nuclear processes as well as in quantum communication.

Keywords

Quantum Optics 

References

  1. 1.
    J. Durnin, J. Opt. Soc. Am. 4, 651 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    J. Durnin, J.J. Miceli Jr., J.H. Eberly, Phys. Rev. Lett. 58, 1499 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    D. McGloin, K. Dholakia, Contemp. Phys. 46, 15 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    R. Jáuregui, S. Hacyan, Phys. Rev. A 71, 033411 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    S.K. Tiwari, S.R. Mishra, S.P. Ram, H.S. Rawat, Appl. Opt. 51, 3718 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Ismail, N. Khilo, V. Belyj, A. Forbes, J. Opt. 14, 085703 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    L. Allen, S.M. Barnett, M.J. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol and Philadelphia, 2003)Google Scholar
  8. 8.
    J.P. Torres, L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011)Google Scholar
  9. 9.
    L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    J. Arlt, V. Garcés-Cháves, W. Sibbert, K. Dholakia, Opt. Commun. 197, 239 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    D.G. Grier, Nature 424, 810 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    M.E.J. Friese, J. Enger, H. Rubinsztein-Dunlop, N.R. Heckenberg, Phys. Rev. A 54, 1593 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    J. Arlt, K. Dholakia, Opt. Commun. 177, 297 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    S. Schmid, G. Thalhammer, K. Winkler, F. Lang, J.H. Denschlag, New J. Phys. 8, 159 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    M. Liu, T. Zentgraf, Y. Liu, G. Bartal, X. Zhang, Nat. Nanotechnol. 5, 570 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    J.W.R. Tabosa, D.V. Petrov, Phys. Rev. Lett. 83, 4967 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    V. Garcés-Cháves, D. McGloin, M.J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, Phys. Rev. Lett. 91, 093602 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    M. Merano, N. Hermosa, J.P. Woerdman, A. Aiello, Phys. Rev. A 82, 023817 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    A. Aiello, New J. Phys. 14, 013058 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Nature 412, 313 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    M.F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, W.D. Phillips, Phys. Rev. Lett. 97, 170406 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    S. Franke-Arnold, L. Allen, M. Padgett, Laser Photon. Rev. 2, 299 (2008)CrossRefGoogle Scholar
  23. 23.
    K.Y. Bliokh, Y.P. Bliokh, S. Savel’ev, F. Nori, Phys. Rev. Lett. 99, 190404 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    K.Y. Bliokh, M.R. Dennis, F. Nori, Phys. Rev. Lett. 107, 174802 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    M. Uchida, A. Tonomura, Nature 464, 737 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    J. Verbeeck, H. Tian, P. Schattschneider, Nature 467, 301 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    J. Verbeeck, P. Schattschneider, S. Lazar, M. Stöger-Pollach, S. Löffler, A. Steiger-Thirsfeld, G. Van Tendeloo, Appl. Phys. Lett. 99, 203109 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    B.J. McMorran, A. Agrawal, I.M. Anderson, A.A. Herzing, H.J. Lezec, J.J. McClelland, J. Unguris, Science 331, 192 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    A.G. Hayrapetyan, S. Fritzsche, Phys. Scr. T., acceptedGoogle Scholar
  30. 30.
    V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics (Pergamon Press, Oxford, 1982)Google Scholar
  31. 31.
    U.D. Jentschura, V.G. Serbo, Phys. Rev. Lett. 106, 013001 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    U.D. Jentschura, V.G. Serbo, Eur. Phys. J. C 71, 1571 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    I.S. Gradshtein, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, 2000)Google Scholar
  34. 34.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, 2001)Google Scholar
  35. 35.
    L. Allen, J. Eberly, Optical Resonance and Two-Level Atoms (Dover Publications, 1987)Google Scholar
  36. 36.
    C.J. Foot, Atomic Physics (Oxford University Press, 2005)Google Scholar
  37. 37.
    C. Cohen-Tannoudji, D. Guéry-Odelin, Advances in Atomic Physics: An overview (World Scientific, 2011)Google Scholar
  38. 38.
    V.V. Kozlov, Y. Rostovtsev, M.O. Scully, Phys. Rev. A 74, 063829 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    C. Champenois, G. Hagel, M. Houssin, M. Knoop, C. Zumsteg, F. Vedel, Phys. Rev. Lett. 99, 013001 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    D.A. Cardimona, P.M. Alsing, H. Mozer, C. Rhodes, Phys. Rev. A 79, 063817 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    L.-M. Duan, A. Sørensen, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 85, 3991 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    H.-R. Noh, W. Jhe, J. Opt. Soc. Am. B 27, 1712 (2010)CrossRefGoogle Scholar
  43. 43.
    P. Kumar, A.K. Sarma, Phys. Rev. A 84, 043402 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    G. Andrelczyk, M. Brewczyk, Ł. Dobrek, M. Gajda, M. Lewenstein, Phys. Rev. A 64, 043601 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    L.E. Helseth, Phys. Rev. A 69, 015601 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    X.-J. Liu, H. Jing, X. Liu, M.-L. Ge, Eur. Phys. J. D 37, 261 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    J.D. Jackson, Classical Electrodynamics (John Wiley & Sons, 2001)Google Scholar
  48. 48.
    I.I. Rabi, Phys. Rev. 51, 652 (1937)ADSCrossRefGoogle Scholar
  49. 49.
    K.J. Meharg, J.S. Parker, K.T. Taylor, J. Phys. B 38, 237 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    G.J. Zeng, Phys. Rev. A 63, 053408 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    P. Schattschneider, J. Verbeeck, Ultramicroscopy 111, 1461 (2011)CrossRefGoogle Scholar
  52. 52.
    K.Y. Bliokh, M.A. Alonso, E.A. Ostrovskaya, A. Aiello, Phys. Rev. A 82, 063825 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    D.V. Karlovets, Phys. Rev. A 86, 062102 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules (Longman, London and New York, 1983)Google Scholar
  55. 55.
    R.G. Parsons, V.F. Weisskopf, Z. Phys. 202, 492 (1967)ADSCrossRefGoogle Scholar
  56. 56.
    H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer, New York, Berlin, 1999)Google Scholar
  57. 57.
    K.B. Kuntz, B. Braverman, S.H. Youn, M. Lobino, E.M. Pessina, A.I. Lvovsky, Phys. Rev. A 79, 043802 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    K.Y. Bliokh, F. Nori, Phys. Rev. A 86, 033824 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    B. Povh, K. Rith, C. Scholz, F. Zetsche, Particles and Nuclei (Springer, 2008)Google Scholar
  60. 60.
    V.V. Skobelev, Sov. Phys. J. Exp. Theor. Phys. 67, 1322 (1988)Google Scholar
  61. 61.
    V.V. Skobelev, Sov. Phys. J. Exp. Theor. Phys. 68, 221 (1989)Google Scholar
  62. 62.
    C. Szymanowski, V. Véniard, R. Taïeb, A. Maquet, C.H. Keitel, Phys. Rev. A 56, 3846 (1997)ADSCrossRefGoogle Scholar
  63. 63.
    A.R. Mkrtchyan, R.M. Avakyan, A.G. Hayrapetyan, B.V. Khachatryan, R.G. Petrosyan, Armenian J. Phys. 2, 258 (2009)Google Scholar
  64. 64.
    A.R. Mkrtchyan, A.G. Hayrapetyan, B.V. Khachatryan, R.G. Petrosyan, Phys. At. Nucl. 73, 478 (2010)CrossRefGoogle Scholar
  65. 65.
    K.K. Grigoryan, A.G. Hayrapetyan, R.G. Petrosyan, Nucl. Instrum. Methods B 268, 2539 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    L.D. Landau, E.M. Lifshitz, Theoretical Physics: The Classical Theory of Fields (Butterworth-Heineman, 2000), Vol. 2Google Scholar
  67. 67.
    F. Bloch, A. Siegert, Phys. Rev. 57, 522 (1940)ADSCrossRefGoogle Scholar
  68. 68.
    J. Tuorila, M. Silveri, M. Sillanpää, E. Huneberg, Y. Makhlin, P. Hakonen, Phys. Rev. Lett. 105, 257003 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Armen G. Hayrapetyan
    • 1
    • 2
  • Oliver Matula
    • 1
    • 3
  • Andrey Surzhykov
    • 4
    • 5
  • Stephan Fritzsche
    • 4
    • 5
  1. 1.Physikalisches InstitutRuprecht-Karls-Universität HeidelbergHeidelbergGermany
  2. 2.Max-Planck-Institut für KernphysikHeidelbergGermany
  3. 3.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  4. 4.Helmholtz-Institut JenaJenaGermany
  5. 5.Theoretisch-Physikalisches InstitutFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations