CO oxidation by copper cluster anions

Abstract

Reactions of CO and O2 on size-selected copper cluster anions, Cu n - (n = 4–11), have been investigated at the collision energy of 0.2 eV by use of a guided ion beam-tandem mass spectrometer. Oxygen-adsorbed copper anions, Cu n O2 -, in particular Cu5O2 - and Cu9O2 -, show an evidence of the CO oxidation, that is, the formation of the monoxide Cu n O. The density functional theory calculation reveals that the CO oxidation occurs more exothermically on Cu5O2 - and Cu9O2 - than the other clusters. This can be explained by the relatively small dissociation energy of their Cu–O bonds. In addition, the calculations on Cu5O2 +/- indicate that the CO oxidation proceeds via a low-energy pathway for the anion owing to the structural rearrangement of the copper cluster compared to the cation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R.M. Heck, R.J. Farrauto, S.T. Gulati, Catalytic Air Pollution Control: Commercial Technology (John Wiley & Sons, Inc., 2009)

  2. 2.

    M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115, 301 (1989)

    Article  Google Scholar 

  3. 3.

    A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R.N. Barnett, U. Landman, J. Phys. Chem. A 103, 9573 (1999)

    Article  Google Scholar 

  4. 4.

    B. Yoon, H. Häkkinen, U. Landman, A.S. Wörz, J.-M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 307, 403 (2005)

    ADS  Article  Google Scholar 

  5. 5.

    U. Heiz, U. Landman, Nanocatalysis (Springer-Verlag, 2007)

  6. 6.

    W.T. Wallace, R.L. Whetten, J. Am. Chem. Soc. 124, 7499 (2002)

    Article  Google Scholar 

  7. 7.

    J. Hagen, L.D. Socaciu, M. Elijazyfer, U. Heiz, T.M. Bernhardt, L. Wöste, Phys. Chem. Chem. Phys. 4, 1707 (2002)

    Article  Google Scholar 

  8. 8.

    L.D. Socaciu, J. Hagen, T.M. Bernhardt, L. Wöste, U. Heiz, H. Häkkinen, U. Landman, J. Am. Chem. Soc. 125, 10437 (2003)

    Article  Google Scholar 

  9. 9.

    G.E. Johnson, N.M. Reilly, E.C. Tyo, A.W. Castleman Jr., J. Phys. Chem. C 112, 9730 (2008)

    Article  Google Scholar 

  10. 10.

    C. Bürgel, N.M. Reilly, G.E. Johnson, R. Mitrić, M.L. Kimble, A.W. Castleman Jr., V. Bonačić-Koutecký, J. Am. Chem. Soc. 130, 1694 (2008)

    Article  Google Scholar 

  11. 11.

    L.D. Socaciu, J. Hagen, J.L. Roux, D. Popolan, T.M. Bernhardt, L. Wöste, J. Chem. Phys. 120, 2078 (2004)

    ADS  Article  Google Scholar 

  12. 12.

    R. Mitrić, C. Bürgel, V. Bonačić-Koutecký, Proc. Natl. Acad. Sci. 104, 10314 (2007)

    ADS  Article  Google Scholar 

  13. 13.

    R.E. Leuchtner, A.C. Harms, A.W. Castleman Jr., J. Chem. Phys. 92, 6527 (1990)

    ADS  Article  Google Scholar 

  14. 14.

    M.A. Nygren, Per E.M. Siegbahn, C. Jin, T. Guo, R.E. Smalley, J. Chem. Phys. 95, 6181 (1991)

    ADS  Article  Google Scholar 

  15. 15.

    T.H. Lee, K.M. Ervin, J. Phys. Chem. 98, 10023 (1994)

    Article  Google Scholar 

  16. 16.

    L. Holmgren, H. Grönbeck, M. Andersson, A. Rosén, Phys. Rev. B 53, 16644 (1996)

    ADS  Article  Google Scholar 

  17. 17.

    S. Hirabayashi, M. Ichihashi, Y. Kawazoe, T. Kondow, J. Phys. Chem. A 116, 8799 (2012)

    Article  Google Scholar 

  18. 18.

    M.P. Irion, A. Selinger, Chem. Phys. Lett. 158, 145 (1989)

    ADS  Article  Google Scholar 

  19. 19.

    B.J. Winter, E.K. Parks, S.J. Riley, J. Chem. Phys. 94, 8618 (1991)

    ADS  Article  Google Scholar 

  20. 20.

    M.P. Irion, Int. J. Mass Spectrom. Ion Process. 121, 1 (1992)

    ADS  Article  Google Scholar 

  21. 21.

    M. Andersson, J.L. Persson, A. Rosén, J. Phys. Chem. 100, 12222 (1996)

    Article  Google Scholar 

  22. 22.

    J.U. Reveles, G.E. Johnson, S.N. Khanna, A.W. Castleman Jr., J. Phys. Chem. C 114, 5438 (2010)

    Article  Google Scholar 

  23. 23.

    M. Ichihashi, T. Hanmura, R.T. Yadav, T. Kondow, J. Phys. Chem. A 104, 11885 (2000)

    Article  Google Scholar 

  24. 24.

    T. Hanmura, M. Ichihashi, R. Okawa, T. Kondow, Int. J. Mass Spectrom. 280, 184 (2009)

    ADS  Article  Google Scholar 

  25. 25.

    O. Ingólfsson, H. Takeo, S. Nonose, J. Chem. Phys. 110, 4382 (1999)

    ADS  Article  Google Scholar 

  26. 26.

    R.D. Levine, Molecular Reaction Dynamics (Cambridge University Press, 2005)

  27. 27.

    D.R. Lide, CRC Handbook of Chemistry and Physics, 82nd edn. (CRC Press, Boca Raton, 2001)

  28. 28.

    J.R. Gord, R.J. Bemish, B.S. Freiser, Int. J. Mass Spectrom. Ion Process. 102, 115 (1990)

    ADS  Article  Google Scholar 

  29. 29.

    M.J. Frisch et al., Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, 2009)

  30. 30.

    V.A. Spasov, T.-H. Lee, K.M. Ervin, J. Chem. Phys. 112, 1713 (2000)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yoshiyuki Kawazoe or Masahiko Ichihashi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hirabayashi, S., Kawazoe, Y. & Ichihashi, M. CO oxidation by copper cluster anions. Eur. Phys. J. D 67, 35 (2013). https://doi.org/10.1140/epjd/e2012-30493-5

Download citation

Keywords

  • Collision Energy
  • Collision Induce Dissociation
  • Reaction Cross Section
  • Gold Cluster
  • Bond Dissociation Energy