Absolute OH density determination by laser induced fluorescence spectroscopy in an atmospheric pressure RF plasma jet

  • Q. Xiong
  • A. Yu. Nikiforov
  • L. Li
  • P. Vanraes
  • N. Britun
  • R. Snyders
  • X. P. Lu
  • C. Leys
Regular Article

Abstract

In this paper, the ground state OH density is measured in high pressure plasma by laser-induced fluorescence (LIF) spectroscopy. The OH density determination is based on the simulation of the intensity fraction of fluorescence from the laser-excited level of OH (A) in the total detected LIF signal. The validity of this approach is verified in an atmospheric pressure Ar  +  H2O plasma jet sustained by a 13.56 MHz power supply. The transition line P1 (4) from OH (A,v′ = 1,J′ = 3) → OH   (X,v′′ = 0,J′′ = 4) is used for the LIF excitation. The absolute OH density is determined to be 2.5 × 1019 m-3 at 1 mm away from the jet nozzle. It corresponds to a dissociation of 0.06% of the water vapor in the working gas. Different mechanisms of OH (X) production in the core of the plasma jet are discussed and analyzed.

Keywords

Plasma Physics 

References

  1. 1.
    J. Chunqi, A.A.H. Mohamed, R.H. Stark, J.H. Yuan, K.H. Schoenbach, IEEE. Trans. Plasma Sci. 33, 1416 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    R. Rudolph, K.P. Francke, H. Miessner, Plasma Chem. Plasma Process. 22, 401 (2002)CrossRefGoogle Scholar
  3. 3.
    C.M. Marks, L.D. Schmidt, Chem. Phys. Lett. 178, 358 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    M.A. Malik, Plasma Chem. Plasma Process. 30, 21 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Bruggeman, D.C. Schram, Plasma Sources Sci. Technol. 19, 045025 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    R. Ono, T. Oda, IEEE. Trans. Ind. Appl. 37, 709 (2001)CrossRefGoogle Scholar
  7. 7.
    G. Dilecce, P.F. Ambrico, M. Simek, S. De Benedictis, Appl. Phys. B 75, 131 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    H.F. Döbele, T. Mosbach, K. Niemi, V.S. von der Gathen, Plasma Sources Sci. Technol. 14, S31 (2005)CrossRefGoogle Scholar
  9. 9.
    R. Kienle, M.P. Lee, K. Kohse-Höinghaus, Appl. Phys. B 63, 403 (1996)ADSGoogle Scholar
  10. 10.
    A. Ershov, J. Borysow, J. Phys. D 28, 68 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    R. Ono, T. Oda, J. Phys. D 35, 2133 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    S. Yonemori, Y. Nakagawa, R. Ono, T. Oda, J. Phys. D 45, 225202 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    G. Dilecce, P.F. Ambrico, M. Simek, S. De Benedictis, Chem. Phys. 398, 142 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    F. Tochikubo, S. Uchida, T. Watanabe, Jpn J. Appl. Phys. 43, 315 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    T. Verreycken, R.M. van der Horst, A.H.F.M. Baede, E.M. van Veldhuizen, P.J. Bruggeman, J. Phys. D 45, 045205 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    F. Tochikubo, S. Uchida, T. Watanabe, Jpn J. Appl. Phys. 43, 315 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    R.B. Miles, W.R. Lempert, J.N. Forkey, Meas. Sci. Technol. 12, R33 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    U. Rahmann, A. Bulter, U. Lenhard, R. Dusing, D. Markus, A. Brockhinke, K. Kohse-Hoinghaus, LASKIN – A Simulation Program for Time-Resolved LIF-Spectra, Internal Report, University of Bielefeld, Faculty of Chemistry, Physical ChemistryGoogle Scholar
  19. 19.
    R. Kienle, M.P. Lee, K. Kohse-Höinghaus, Appl. Phys. B 62, 583 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    J.T. Salmon, N.M. Laurendeau, Appl. Opt. 24, 65 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    P. Bruggeman, F. Iza, P. Guns, D. Lauwers, M.G. Kong, Y.A. Gonzalvo, C. Leys, D.C. Schram, Plasma Sources Sci. Technol. 19, 015016 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    C.B. Cleveland, J.R. Wiesenfeld, Chem. Phys. Lett. 144, 479 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    P. Bruggeman, T. Verreycken, M.Á. González, J.L. Walsh, M.G. Kong, C. Leys, D.C. Schram, J. Phys. D 43, 124005 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    L.R. Williams, D.R. Crosley, J. Chem. Phys. 104, 6507 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    C. Wang, N. Srivastava, Eur. Phys. J. D 60, 465 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Z.W. Liu, X.F. Yang, A.M. Zhu, G.L. Zhao, Y. Xu, Eur. Phys. J. D 48, 365 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    P. Bruggeman, G. Cunge, N. Sadeghi, Plasma Sources Sci. Technol. 21, 035019 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    S. Yonemori, Y. Nakagaw, R. Ono, T. Oda, J. Phys. D 45, 225202 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Itikawa, J. Phys. Chem. Ref. Data 34, 1 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    S. Novicki, J. Krenos, J. Chem. Phys. 89, 7031 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    N. Britun, M. Gaillard, Y.M. Kim, K.S. Kim, J.G. Han, Met. Mater. Int. 13, 483 (2007)CrossRefGoogle Scholar
  32. 32.
    B. Benstaali, P. Boubert, B.G. Cheron, A. Addou, J.L. Brisset, Plasma Chem. Plasma Process. 22, 553 (2002)CrossRefGoogle Scholar
  33. 33.
    M.A. Gigosos, M.A. Gonzalez, V. Cardenoso, Spectrochim. Acta Part B 58, 1489 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    C.O. Laux, T.G. Spence, C.H. Kruger, R.N. Zare, Plasma Sources Sci. Technol. 12, 125 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    J. Luque, D.R. Crosley, LIFBASE: database and spectral simulation (version 1.5) (1999)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Q. Xiong
    • 1
    • 2
  • A. Yu. Nikiforov
    • 2
    • 3
  • L. Li
    • 2
  • P. Vanraes
    • 2
  • N. Britun
    • 4
  • R. Snyders
    • 4
    • 5
  • X. P. Lu
    • 1
  • C. Leys
    • 2
  1. 1.HuaZhong University of Science and TechnologyCollege of Electrical and Electronic EngineeringHubeiP.R. China
  2. 2.Department of Applied Physics, Research Unit Plasma TechnologyGhent UniversityGhentBelgium
  3. 3.Institute of Solution Chemistry of the Russian Academy of ScienceIvanonoRussia
  4. 4.Université de MonsChimie des Interactions Plasma-Surface (ChIPS), CIRMAPMonsBelgium
  5. 5.Materia Nova Research Center, Parc InitialisMonsBelgium

Personalised recommendations