Skip to main content
Log in

Effect of thermal noise on atom-field interaction: Glauber-Lachs versus mixing

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Coherent signal incorporating thermal noise is a mixed state of radiation. There are two distinct classes of such states, a Gaussian state obtained by Glauber-Lachs mixing and a non-Gaussian state obtained by the canonical probabilistic mixing of thermal state and coherent state. Though both these versions are noise-included signal states, the effect of noise is less pronounced in the Glauber-Lachs version. Effects of these two distinct ways of noise addition is considered in the context of atom-field interaction; in particular, temporal evolution of population inversion and atom-field entanglement are studied. Quantum features like the collapse-revivals in the dynamics of population inversion and entanglement are diminished by the presence of thermal noise. It is shown that the features lost due to the presence of thermal noise are restored by the process of photon-addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.C. Gerry, P.L. Kinght, Introductory Quantum Optics (Cambridge University Press, New York, 2005)

  2. R.J. Glauber, in Physics of Quantum Electronics, Conference Proceedings, edited by P.L. Kelley, B. Lax, P.E. Tannenwald (McGraw-Hill Book Co., New York, 1966)

  3. G. Lachs, Phys. Rev. B 138, 1012 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  4. C.M. Caves, P.B. Drummond, Rev. Mod. Phys. 66, 481 (1994)

    Article  ADS  Google Scholar 

  5. C. Valverde, B. Baseia, Int. J. Quant. Inf. 2, 421 (2004)

    Article  MATH  Google Scholar 

  6. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  7. L. Mista Jr., R. Filip, J. Fiurasek, Phys. Rev. A 65, 062315 (2002)

    Article  ADS  Google Scholar 

  8. M.G. Genoni, M.G.A. Paris, Phys. Rev. A 82, 052341 (2010)

    Article  ADS  Google Scholar 

  9. W. Vogel, D.G. Welsch, S. Wallentowitz, Quantum Optics An Introduction (Wiley-VCH, Berlin, 2001)

  10. C.T. Lee, Phys. Rev. A 44, R2775 (1991)

    Article  ADS  Google Scholar 

  11. G.S. Agarwal, K. Tara, Phys. Rev. A 43, 492 (1991)

    Article  ADS  Google Scholar 

  12. I.S. Gradshteyn, I.M. Ryzhik, Table of Integral, Series and Products (Academic Press, 2000)

  13. A. Zavatta, S. Viciani, M. Bellini, Science 306, 660 (2004)

    Article  ADS  Google Scholar 

  14. W.H. Louisell, Quantum Statistical Properties of Radiation (John-Wiley, New York, 1973)

  15. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89109 (1963)

    Article  Google Scholar 

  16. S.M. Barnett, P.M. Radmore, Methods of Theoretical Quantum Optics (Springer, New York, 1997)

  17. T.C. Wei et al., Phys. Rev. A 67, 022110 (2003)

    Article  ADS  Google Scholar 

  18. X.W. Hou, B. Hu, Phys. Rev. A 69, 042110 (2004)

    Article  ADS  Google Scholar 

  19. H. Kayhan, Phys. Scr. 83, 025402 (2011)

    Article  ADS  Google Scholar 

  20. F.W. Cummings, Phys. Rev. 140, A1051 (1965)

    Article  ADS  Google Scholar 

  21. J.H. Eberly, N.B. Narozhny, J.J. Sanchez-Mondragon, Phys. Rev. Lett. 44, 1323 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Rempe, H. Walther, N. Klein, Phys. Rev. Lett. 58, 353 (1987)

    Article  ADS  Google Scholar 

  23. M.V. Satyanarayana, M. Vijayakumar, Phys. Rev. A 45, 5301 (1992)

    Article  ADS  Google Scholar 

  24. G.N. Jones, J. Haight, C.T. Lee, Quantum Semiclass. Opt. 9, 411 (1997)

    Article  ADS  Google Scholar 

  25. T. Kiesel, W. Vogel, M. Bellini, A. Zavatta, Phys. Rev. A 83, 032116 (2011)

    Article  ADS  Google Scholar 

  26. A.R. Usha Devi, R. Prabhu, M.S. Uma, Eur. Phys. J. D 40, 133 (2006)

    Article  ADS  Google Scholar 

  27. C.T. Lee, Phys. Rev. A 52, 3374 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sivakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivakumar, S. Effect of thermal noise on atom-field interaction: Glauber-Lachs versus mixing. Eur. Phys. J. D 66, 277 (2012). https://doi.org/10.1140/epjd/e2012-30399-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30399-2

Keywords

Navigation